Analysis of Thermal Stress Distribution Sensitivity in a Planar Solid Oxide Fuel Cell

Document Type : Propulsion and Heat Transfer

Authors

faculty of mechanical engineering, K.N.Toosi university

Abstract

A fuel cell is an electro-chemical tool capable of converting chemical energy into electrical energy. The high operating temperature of the solid oxide fuel cell (SOFC), (between 700oC to 1000oC), causes thermal stress which is the origin of crack initiation and propagation. Thermal stress causes gas escape, structure variability and SOFC operation cessation before its lifetime. The purpose of the current paper is to present a method that predicts the thermal stress distribution and forecasts the beginning of fissure or crack occurrences in an anisotropic porous electrode of the planar SOFC. The governing coupled non-linear differential equations of heat transfer, fluid flow, mass transfer, mass continuity, and momentum are solved numerically. A code based on computational fluid dynamics (CFD), computational structural mechanics and finite element method (FEM) is developed and utilized. The results show that the highest thermal stress occurs at the lower corners of anode and the upper corners of cathode. The cathode’s thickness at the left side increases by 1.5% and the concentrated temperature and thus the fissure occurs between the top and bottom left corners of the cathode.

Keywords


  1. Hoogers, G. “Fuel Cell Technology Handbook”, CRC Press, Boca Raton,USA, 2003.##
  2. Hibino, T., Hashimoto, A., Yano, M., Yoshida, S.I., and Sano, M. “High Performance Anodes for SOFCs Operating in Methane-Air Mixture at Reduced Temperatures”, journal of electrochemistry society, Vol. 149, pp. 133-136, 2002##
  3. Zhu, H., Kee, R.J., Janardhanan, V.M., Deutschmann, O., and Goodwin, D.G.,” Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells”, Journal of electrochemistry society, Vol. 152, pp. 2427-2440, 2005.##
  4. Rahimi-Esbo,  M., Alizadeh e., Rahgoshay  S.M., Khorshidian M., Saadat S.H.M.,“Improving Performance and Decreasing of Cooling System Volume in Low Temperature PEM Fuel Cell Using Nanofluid”, AEROSPACE MECHANICS JOURNAL, vol 15, iss 2, pp 1-16, 2019. (In Persian)##
  5. Golmakani, M.E., Rahimi, e.,“ Nonlinear Thermo-Elastic Analysis of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Panel”, AEROSPACE MECHANICS JOURNAL, vol 14, iss 1, pp 97-111, 2018. (In Persian).##
  6. Vafaeesefat, A., Tavoosi, S.M.,  “Optimization of Copper Mirrors Polishing Parameters by Chemical-Mechanical Method”, AEROSPACE MECHANICS JOURNAL, vol 15, iss 3, pp 119-126, 2019. (in Persian).##
  7. Greco, F., Frandsen, H.L., Nakajo, A., Madsen, M.F., Van herle, J.,” Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack”, Journal of the European Ceramic Society, Vol. 34, 2695–2704, 2014.##
  8.  M. Peksen, “Numerical thermomechanical modelling of solid oxide fuel cells”, Progress in  Energy and Combustion Science, volume 48, pp. 1-20, 2015.##
  9.  Boccaccini, D. N., Sevecek, O., Frandsen, H.L., Dlouhy, I., Molin, S., Cannio, M., Hjelm, J. and Hendriksen P.V, “Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces”, Material Letters, Vol. 162, pp. 250–253, 2016.##
  10. Xu, M., Li, T., Yang, M., Anderson, M., “Solid oxide fuel cell interconnect design optimization considering the thermal Stresses”, Science Bulletin, Vol. 61, Iss.17, pp. 1333-1344, 2016.##
  11. Fleischhauer, F., Terner, M., Bermejo, R., Danzer, R., Mai, A., Graule, T., and Kuebler,J., “Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells”. Journal of Power Sources, Vol. 275, pp. 217–226, 2015.##
  12.  Kamvar, M., Ghasemi, M., Rezaei, M., “Effect of catalyst layer configuration on single chamber solid oxide fuel cell performance”, Applied Thermal Engineering ,Vol.100, pp. 98-104, 2016.##
  13.  Pianko-Oprych, P., Zinko, T., Jaworski, Z., “A Numerical Investigation of the Thermal Stresses of a Planar Solid Oxide Fuel Cell”, Materials, Vol. 9, Iss. 10, pp. 814-831, 2016.##
  14. Celik, S., Ibrahimoglu, B., DMat, M., Kaplan, Y., and Veziroglu, T.N, “Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell”, International Journal of Hydrogen Energy, Vol. 40, Iss.24, pp.7895–7902, 2015.##
  15. Luo, Y., Jiang, W., Zhang, Q., Zhang, W.Y., and  Hao, M.,” Effects of anode porosity on thermal stress and failure probability of planar solid oxide fuel cell with bonded compliant seal”, International Journal of Hydrogen Energy, Vol. 41, Iss. 18, pp. 7464–7474, 2016.##
  16. Kong, W., Zhang, W., Zhang, S., Zhang, Q., and Su, S., “Residual stress analysis of a micro-tubular solid oxide fuel cell”, International Journal of Hydrogen Energy, Vol.41, Iss. 36, pp. 16173–16180, 2016.##
  17. Fan, P., Li, G., Zeng,Y., and  Zhang, X., “Numerical study on thermal stresses of a planar solid oxide fuel cell”, International Journal of Thermal Sciences, Vol. 77, pp. 1–10, 2014.##
  18. Xie, J.,  Hao, W.,  Wang, F., “Crack propagation of planar and corrugated solid oxide fuel cells during cooling process”, international journal of energy research, Vol. 43, Iss. 7,  pp 1-8, 2019.##
  19.  Xie, J.,  Hao, W.,  Wang, F.,  “the analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power”, international journal of energy research, Vol. 42, Iss 5, pp 2010-2020, 2018.##
    1. Wang, C., Yang, J.J., Huang, W., Zhang, T., Yan, D., Pu, J., Chi, B., Li, J., “Numerical simulation and analysis of thermal stress distributions for a planar solid oxide fuel cell stack with external manifold structure”, International journal of hydrogen Energy, Vol. 45, Iss. 45, pp 20900-20910, 2018##
    2. Bove, R. and Ubertini, S., “Modeling Solid Oxide Fuel Cells Methods, Procedures and    Techniques, Fuel Cell and Hydrogen Energy, springer”, New York, USA, 2008.##
    3. Singh, P. and Bansal, P., “Advances in Solid Oxide Fuel Cells IV”, John Wiley, New York, USA, 2008.##
    4. Ho, T. X., Kosinski, P., Hoffmann, A.C., and Vik, A.,“Effects of heat sources on the performance of a planar solid oxide fuel cell”, International Journal of Hydrogen Energy, Vol.35. Iss.9, pp. 4276-4284, 2010.##
    5. Nehter, P., “Theoretical analysis of High Fuel Utilization Solid Oxide Fuel Cell”, Nova Science publications, New York, USA, 2008.##
    6. Boley, B.A. and Weiner, J.  H., “Theory of thermal stresses”, Dover publication, New York, USA, 1997.##

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Hetnarski, R. B., Eslami, M. R., “Thermal stress: Advanced in Theory”, springer publication, New York, USA, 2008.##
  2. Rogers, W. A. , Gemmen, R. S. , Johnson, C. , Prinkey, M.  and Shahnam, M. ., “Validation and Application of a CFD-Based Model for Solid Oxide Fuel Cells and Stacks”, ASME 2003 1st International Conference on Fuel Cell Science, New York, USA, 2003##
  3. Hussain, M.M., Li, X.,and Dincer, I., “Mathematical modeling of planar solid oxide fuel cells”, Journal of Power Sources, Vol. 161, Iss. 2, pp. 1012-1022, 2006.##
  4. Shao, Q., Bouhala, L., Fiorelli, D., Fahs, M., Younes, A., Núñez, P., Belouettar, S., and, Makradi,A., “ Influence of fluid flow and heat transfer on crack propagation in SOFC multi-layered like material with anisotropic porous layers”, International Journal of solids and structures, Vol. 97, 189-198, 2016.##
  5. Shao, Q., Fernández-González, R., Ruiz-Morales, J.C.,  Bouhala, L., Fiorelli, D., Younes, A., Núñez, P., Belouettar, S., and , Makradi,A. “An advanced numerical model for energy conversion and crack growth predictions in Solid Oxide Fuel Cell units”, International Journal of Hydrogen Energy, Vol. 40, Iss. 46, pp. 16509 – 16520, 2015.##