Document Type : Dynamics, Vibrations, and Control
Authors
1
Shahid Rajaee Teacher Training University, Tehran, Iran
2
Design group, Mechanical engineering faculty, Shahid Rajaee Teacher Training University
3
Vehicle engineering,Faculty of Mechanical engineering, K.Nasir Toosi Uni.
Abstract
In this study, an active steering system is proposed to control an articulated heavy vehicle during high-speed intelligent lane- change maneuver for obstacle avoidance. For this purpose, a simplified model of an articulated heavy vehicle is created in MATLAB/Simulink, then three control systems, i.e., model predictive controller (MPC), Linear quadratic integral (LQI) controller, and 2-DOF PID controller, are designed for its front axle steering system. Furthermore, the constraints associated with the vehicle lateral stability using the sideslip angles of the truck and the semi-trailer, and the reference articulation angle for the vehicle trajectory is defined, then the stability of the vehicle during moving on dry and slippery roads are investigated. In addition, in order to evaluate the performance of the control systems, two different scenarios, i.e., first, facing an obstacle on a dry road and second, the same situation on a slippery road, are taken into account and are fulfilled on the basis of a co-simulation between MATLAB and TruckSim. In the next step, to optimize the controllers' coefficients, some various tests are performed and implemented in TruckSim software and using an intelligent method, the optimal coefficients are obtained. Finally, the performance of the three controllers are compared to assess their strengths and weaknesses. The comparison shows that model predictive control (MPC) system is advantageous for this purpose.
Keywords