[2] N. Velázquez, R. Best, Methodology for the Energy Analysis of an Air Cooled Gax Absorption Heat Pump Operated by Natural Gas and Solar Energy,
Applied Thermal Engineering. 22 (2002) 1089-1103,
https://doi.org/10.1016/S1359-4311(02)00028-5.##
[3] W.T. Hanna, W.H. Wilkinson, J.H. Saunders, D.B. Phillips, Pinch-Point Analysis: An Aid to Understanding the Gax Absorption Cycle, United States. 1995##
[8] R.D. Misra, P.K. Sahoo, A. Gupta, Thermoeconomic Evaluation and Optimization of an Aqua-Ammonia Vapour-Absorption Refrigeration System,
International Journal of Refrigeration. 29 (2006) 47-59,
https://doi.org/10.1016/j.ijrefrig.2005.05.015.##
[9] J. Rossa, E. Bazzo, Thermodynamic Modeling of an Ammonia-Water Absorption System Associated with a Microturbine, International Journal of Thermodynamics. 12 (2009) 10.5541/ijot.236.##
[11] O. Arslan, Exergoeconomic Evaluation of Electricity Generation by the Medium Temperature Geothermal Resources, Using a Kalina Cycle: Simav Case Study,
International Journal of Thermal Sciences. 49 (2010) 1866-1873,
https://doi.org/10.1016/j.ijthermalsci.2010.05.009.##
[12] V. Zare, A. Moalemian, Parabolic Trough Solar Collectors Integrated with a Kalina Cycle for High Temperature Applications: Energy, Exergy and Economic Analyses,
Energy Conversion and Management. 151 (2017) 681-692,
https://doi.org/10.1016/j.enconman.2017.09.028.##
[13] V. Zare, S.M.S. Mahmoudi, M. Yari, On the Exergoeconomic Assessment of Employing Kalina Cycle for Gt-Mhr Waste Heat Utilization,
Energy Conversion and Management. 90 (2015) 364-374,
https://doi.org/10.1016/j.enconman.2014.11.039.##
[16] B.H. Gebreslassie, M. Medrano, D. Boer, Exergy Analysis of Multi-Effect Water–Libr Absorption Systems: From Half to Triple Effect,
Renewable Energy. 35 (2010) 1773-1782,
https://doi.org/10.1016/j.renene.2010.01.009.##
[17] A. Bejan, Tsatsaronis, G., Moran, M.,, Thermal Design and Optimization, John Wiley and Sons Inc, New York, 1996.##
[18] L.S. Vieira, J.L. Donatelli, M.E. Cruz, Exergoeconomic Improvement of a Complex Cogeneration System Integrated with a Professional Process Simulator,
Energy Conversion and Management. 50 (2009) 1955-1967,
https://doi.org/10.1016/j.enconman.2009.04.020.##
[19] R.D. Misra, P.K. Sahoo, S. Sahoo, A. Gupta, Thermoeconomic Optimization of a Single Effect Water/Libr Vapour Absorption Refrigeration System,
International Journal of Refrigeration. 26 (2003) 158-169,
https://doi.org/10.1016/S0140-7007(02)00086-5.##
[20] V. Zare, S.M.S. Mahmoudi, M. Yari, M. Amidpour, Thermoeconomic Analysis and Optimization of an Ammonia–Water Power/Cooling Cogeneration Cycle,
Energy. 47 (2012) 271-283,
https://doi.org/10.1016/j.energy.2012.09.002.##
[21] Y. Wang, N. Lior, Thermoeconomic Analysis of a Low-Temperature Multi-Effect Thermal Desalination System Coupled with an Absorption Heat Pump,
Energy. 36 (2011) 3878-3887,
https://doi.org/10.1016/j.energy.2010.09.028.##
[22] B.H. Gebreslassie, G. Guillén-Gosálbez, L. Jiménez, D. Boer, Design of Environmentally Conscious Absorption Cooling Systems Via Multi-Objective Optimization and Life Cycle Assessment,
Applied Energy. 86 (2009) 1712-1722,
https://doi.org/10.1016/j.apenergy.2008.11.019.##