1
Ölander, A. “An electrochemical investigation of solid cadmium-gold alloys”, Journal of the J. Am. Chem. Soc. Vol. 54, No. 10, pp. 3819-3833, 1932.##
|
2
|
Greninger, A.B., Mooradian, V.G. “Strain Transformation in metastable beta copper zinc and beta copper–Ti alloys”, AIME Trance. Vol. 128, pp. 337–369, 1938.##
|
3
|
Chang, L.C., Read, T.A. “Behavior of the elastic properties of AuCd”, Trans Met Soc AIME.Vol. 191, pp. 47-58, 1951.##
|
4
|
Kauffman, G., Mayo, I. “The story of Nitinol: the serendipitous discovery of the memory metal and its applications”, Chem Educator. Vol. 2, pp. 1–21, 1997.##
|
5
|
Lagoudas, D.C. “Shape memory alloys: modeling and engineering applications”, Springer, New York, 2010.##
|
6
|
Arrison, L., Birocco, K., Gaylord, C., Herndon, B., Manion, K., and Metheny, M. “AE/ME Morphing Wing Design”, Virginia Tech, 2003.##
|
7
|
Bharti, S., Frecker, M., Lesieutre, G., and Browne, J. “Tendon actuated cellular mechanisms for morphing aircraft wing”; Proc. Int. Conf. Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. 2007.##
|
8
|
Wiggins, L.D., Stubbs, M.D., Johnston, C.O., Robertshaw, H.H., Reinholtz, C.F., and Inman, D.J. “A design and analysis of a morphing hyper-elliptic cambered span (HECS) wing”; Proc. Int. Conf. Structures, Structural Dynamics & Materials. 2004.##
|
9
|
Neal, D.A., Good, M.G., Johnston, C.O., Robertshaw, H.H., Mason, W.H., and Inman, D.J. “Design and wind-tunnel analysis of a fully adaptive aircraft configuration”; Proc. Int. Conf. Structures, Structural Dynamics & Materials. 2004.##
|
10
|
Kang, W.R., Kim, E.H., Jeong, M.S., Lee, I., and Ahn, S.M. “Morphing wing mechanism using an SMA wire actuator”, Int. J. Aeronaut. Space Sci. Vol. 13, No. 1, pp. 58-63, 2012.##
|
11
|
Paik, J.K., Hawkes, E., and Wood, R.J. “A novel low-profile shape memory alloy torsional actuator”, Smart Mater. Struct. Vol. 19, No. 12, pp 125014-125023, 2010.##
|
12
|
Shin, B.H., Jang, T., Ryu, B.J., and Kim, Y. A. “modular torsional actuator using shape memory alloy wires”, J. Intell. Mater. Syst. Struct. Vol. 27, No. 12, pp 1658-1665, 2016.##
|
13
|
Guo, Z., Pan, Y., Wee, L.B., and Yu, H. “Design and control of a novel compliant differential shape memory alloy actuator”, Sens. Actuators, A. Vol. 225, pp 71-80, 2015.##
|
14
|
Bashir, M., Rajendran, P., Sharma, C., and Smrutiranjan, D. “Investigation of Smart Material Actuators & Aerodynamic optimization of Morphing Wing”, Mater. Today:. Proc. Vol. 5, No 10, pp. 21069-21075, 2018.##
|
15
|
Yuchen, C.H.E.N., Xing, S.H.E.N., Jiefeng, L.I., and Jinjin, C.H.E.N. “Nonlinear hysteresis identification and compensation based on the discrete Preisach model of an aircraft morphing wing device manipulated by an SMA actuator”. Chin. J. Aeronaut. Vol. 32, No. 4, pp. 1040-1050, 2019.##
|
16
|
Hui, Z., Zhang, Y., and Chen, G. “Aerodynamic performance investigation on a morphing unmanned aerial vehicle with bio-inspired discrete wing structures”, Aerosp. Sci. Technol. Vol. 95, pp. 105419-105429, 2019.##
|
17
|
Sayyaadi, H., Mostafavi, E. “Formation Control of Unmanned Helicopters by Leader-Follower Method”, J. Aerosp. Mech. Vol. 13, No. 4, pp. 59-96. (In Persion)##
|
18
|
Brinson, L.C., Huang, M.S. “Simplifications and comparisons of shape memory alloy constitutive models”, J. Intell. Mater. Syst. Struct. Vol. 7, No 1, pp.108-114, 1996.##
|
19
|
|
[20]
|
Basaeri, H., Yousefi-Koma, A., Zakerzadeh, M.R., and Mohtasebi, S.S. “Experimental study of a bio-inspired robotic morphing wing mechanism actuated by shape memory alloy wires”, Mechatronics. Vol. 24, No. 8, pp. 1231-1241, 2014.##
|
21
|
Heidari, B., Kadkhodaei, M., Barati, M., and Karimzadeh, F. “Fabrication and modeling of shape memory alloy springs”, Smart Mater. Struct. Vol. 25, No. 12, pp. 125003-125012, 2016.##
|
22
|
Shigley, J.E. “Shigley's mechanical engineering design”, Tata McGraw-Hill Education, 2011.##
|