1
Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2
Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran
Abstract
Selective laser melting (SLM) is a laser powder-bed fusion method that offers great potentials in producing components with complex shapes and geometries. Process parameters like laser power and scan speed have significant effect on the induced temperature gradient which determines the molten pool dimensions and surface integrity. Due to the transient feature and fine dimensions of the molten pool, monitoring and measuring the induced temperature gradient and the pool dimensions are extremely challenging. In this article, a finite element model has been used to analyze the process and investigate the scanning speed and laser power parameters during the SLM process on a substrate of Ti6Al4V alloy. In this study, first the theoretical equations of laser have been investigated and after modeling, the accuracy of the modeled laser has been compared with the experimental model. After verifying the laser modeling, the FEM analysis of SLM has been carried out for various laser powers and scan speeds to study the effects of the mentioned process parameters. For the modelling, various physics assumptions have been simultaneously used in the software including heat transfer, solid to liquid phase changes equations, surface tension (Marangoni effect), and laminar fluid flow (Navier-Stokes equation) along with the gravity effect. Molten pool dimensions, temperature gradient along the laser moving heat source, width, and depth of the molten pool, as well as the occurrence of the balling effect phenomenon, have been studied separately in each case. The results obtained by FEM analysis have been compared with the experimental model, showing good compatibility.
DebRoy T., Wei H., Zuback J., Mukherjee T., Elmer J., Milewski J., Beese A. M., Wilson-Heid A., De A., and Zhang W., “Additive manufacturing of metallic components–process, structure and properties”, Prog. Mater. Sci., Vol. 92, pp. 112-224, 2018.##
Schwab H., Prashanth K. G., Löber L., Kühn U., and Eckert J., “Selective laser melting of Ti-45Nb alloy”, Metals, Vol. 5, No. 2, pp. 686-694, 2015.##
Scudino S., Unterdörfer C., Prashanth K., Attar H., Ellendt N., Uhlenwinkel V., and Eckert J., “Additive manufacturing of Cu–10Sn bronze”, Mater. Lett., Vol. 156, pp. 202-204, 2015.##
Reijonen J., Revuelta A., Riipinen T., Ruusuvuori K., and Puukko P., “On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing”, Addit. Manuf., p. 101030, 2020.##
Wang F., “Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology”, Int. J. Adv. Manuf. Technol., Vol. 58, No. 5-8, pp. 545-551, 2012.##
Foroozmehr A., Badrossamay M., Foroozmehr E., and Golabi S. i., “Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed”, Mater. Des., Vol. 89, pp. 255-263, 2016.##
Tian Y., Chen C., Li S., and Huo Q., “Research progress on laser surface modification of titanium alloys”, Appl. Surf. Sci., Vol. 242, No. 1-2, pp. 177-184, 2005.##
Dilip J., Zhang S., Teng C., Zeng K., Robinson C., Pal D., and Stucker B., “Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting,” Prog. Addit. Manuf., Vol. 2, No. 3, pp. 157-167, 2017.##
Li Z., Li B.-Q., Bai P., Liu B., and Wang Y., “Research on the thermal behaviour of a selectively laser melted aluminium alloy: simulation and experiment”, Materials, Vol. 11, No. 7, p. 1172, 2018.##
Masoomi M., Thompson S. M., and Shamsaei N., “Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications”, Int. J. Mach. Tools Manuf., Vol. 118, pp. 73-90, 2017.##
Song B., Dong S., Liao H., and Coddet C., “Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering”, Int. J. Adv. Manuf. Technol., Vol. 61, No. 9-12, pp. 967-974, 2012.##
Boyer R. R., “An overview on the use of titanium in the aerospace industry”, Mater. Sci. Eng. A, Vol. 213, No. 1-2, pp. 103-114, 1996.##
Inagaki I., Takechi T., Shirai Y., and Ariyasu N., “Application and features of titanium for the aerospace industry”, Nippon Steel Tech. Rep., Vol. 106, No. 106, pp. 22-27, 2014.##
Singh P., Pungotra H., and Kalsi N. S., “On the characteristics of titanium alloys for the aircraft applications”, Mater. Today: Proc., Vol. 4, No. 8, pp. 8971-8982, 2017.##
Uhlmann E., Kersting R., Klein T. B., Cruz M. F., and Borille A. V., “Additive manufacturing of titanium alloy for aircraft components”, Procedia Cirp, Vol. 35, pp. 55-60, 2015.##
Waterman N. A. and Dickens P., “Rapid product development in the USA, Europe and Japan”, World Class Design to Manufacture, 1994.##
Huang R., Riddle M., Graziano D., Warren J., Das S., Nimbalkar S., Cresko J., and Masanet E., “Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components”, J. Clean. Prod., Vol. 135, pp. 1559-1570, 2016.##
Lütjering G. and Williams J. C., Titanium. Springer Science & Business Media, 2007.##
ASTM F136 - 12a Standard specification for wrought titanium-6aluminum-4vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNSR56401).##
ASTM F2924 - 12a Standard specification for additive manufacturing titanium-6aluminum-4vanadium with powder bed fusion.##
Kong C.-J., Tuck C. J., Ashcroft I. A., Wildman R. D., and Hague R., “High density Ti6Al4V via SLM processing: microstructure and mechanical properties”, in Solid Freeform Fabr Symp Proc, Vol. 36, pp. 475-483, 2011.##
Karlsson J., Snis A., Engqvist H., and Lausmaa J., “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder fractions”, J. Mater. Process. Technol., Vol. 213, No. 12, pp. 2109-2118, 2013.##
Craeghs T., Bechmann F., Berumen S., and Kruth J.-P., “Feedback control of Layerwise Laser Melting using optical sensors”, Phys. Procedia, Vol. 5, pp. 505-514, 2010.##
Parry L., Ashcroft I., and Wildman R. D., “Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation”, Addit. Manuf., Vol. 12, pp. 1-15, 2016.##
Li Y. and Gu D., “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder”, Mater. Des., Vol. 63, pp. 856-867, 2014.##
Kang J., Yi J., and Wang T., “Effect of laser power and scanning speed on the microstructure and mechanical properties of SLM fabricated Inconel 718 specimens”, Mater. Sci. Eng., Vol. 3, pp. 72-76, 2019.##
Matsumoto M., Shiomi M., Osakada K., and Abe F., “Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing”, Int. J. J. Mach. Tools Manuf., Vol. 42, No. 1, pp. 61-67, 2002.##
Yin J., Zhu H., Ke L., Lei W., Dai C., and Zuo D., “Simulation of temperature distribution in single metallic powder layer for laser micro-sintering”, Comput. Mater. Sci., Vol. 53, No. 1, pp. 333-339, 2012.##
Yang J. H. N., Brandt M., and Sun S. J., “Numerical and experimental investigation of the heat-affected zone in a laser-assisted machining of Ti-6Al-4V alloy process”, in Mater. Sci. Forum, Vol. 618, pp. 143-146: Trans Tech Publ, 2009.##
Hussein A., Hao L., Yan C., and Everson R., “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting”, Mater. Des. (1980-2015), Vol. 52, pp. 638-647, 2013.##
Ali H., Ghadbeigi H., and Mumtaz K., “Processing parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V”, J. Mater. Eng. Perform., Vol. 27, No. 8, pp. 4059-4068, 2018.##
Lee Y. and Zhang W., “Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion”, Addit. Manuf., Vol. 12, pp. 178-188, 2016.##
Nisar A., Schmidt M., Sheikh M., and Li L., “Three-dimensional transient finite element analysis of the laser enamelling process and moving heat source and phase change considerations”, Proc Inst Mech Eng B J Eng Manuf ., Vol. 217, No. 6, pp. 753-764, 2003.##
Zhirnov I., Yadroitsava I., and Yadroitsev I., “Optical monitoring and numerical simulation of temperature distribution at selective laser melting of Ti6Al4V alloy”, in Mater. Sci. Forum, Vol. 828, pp. 474-481: Trans Tech Publ, 2015.##
Tsai T.-W., Choong W.-K., Huang W.-C., Chuang C.-S., De-Yau L., Liu S.-H., Horng J.-B., and Chen J.-K., “Selective Laser Melting of Metal Powders in Additive Manufacturing”, J. Fluid Flow, Heat Mass Transfer (JFFHMT), Vol. 5, No. 4, pp. 90-99.##
Dai D. and Gu D., “Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments”, Mater. Des., Vol. 55, pp. 482-491, 2014.##
Wegner A. and Witt, G., “Process monitoring in laser sintering using thermal imaging”, in SFF Symposium, Austin, Texas, USA, pp. 8-10, 2011.##
Craeghs T., Clijsters S., Yasa E., Bechmann F., Berumen S., and Kruth J.-P., “Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring”, Opt Lasers Eng, Vol. 49, No. 12, pp. 1440-1446, 2011.##
Fischer P., Locher M., Romano V., Weber H.-P., Kolossov S., and Glardon R., “Temperature measurements during selective laser sintering of titanium powder”, Int. J. Mach. Tools Manuf., Vol. 44, No. 12-13, pp. 1293-1296, 2004.##
Li Y. and Gu D., “Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study”, Addit. Manuf., Vol. 1, pp. 99-109, 2014.##
Holman J. P., “Heat Transfer (McGraw-Hill Series in Mechanical Engineering)ˮ. The McGraw-Hill Companies, Inc, 2010.##
Germain G., Morel F., Lebrun J.-L., and Morel A. “Machinability and Surface Integrity for a Bearing Steel and a Titanium Alloy in Laser Assisted Machiningˮ, Lasers Eng. (Old City Publishing), Vol. 17, 2007.##
Zhuang J.-R., Lee Y.-T., Hsieh W.-H., and Yang A.-S., “Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powderˮ, Opt Laser Technol, Vol. 103, pp. 59-76, 2018.##
Spears T. G. and Gold S. A., “In-process sensing in selective laser melting (SLM) additive manufacturingˮ, Integr. Mater. Manuf. Innov., Vol. 5, No. 1, pp. 16-40, 2016.##
Promoppatum P., Onler R., and Yao S.-C., “Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V productsˮ, J. Mater. Process. Technol., Vol. 240, pp. 262-273, 2017.##
Kundakcıoğlu E., Lazoglu I., Poyraz Ö., Yasa E., and Cizicioğlu N., “Thermal and molten pool model in selective laser melting process of Inconel 625ˮ, Int. J. Adv. Manuf. Tech., Vol. 95, No. 9-12, pp. 3977-3984, 2018.##
Boivineau M., Cagran C., Doytier D., Eyraud V., Nadal M.-H., Wilthan B., and Pottlacher G., “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloyˮ, Int. J. Thermophys., Vol. 27, No. 2, pp. 507-529, 2006.##
Fischer P., Romano V., Weber H.-P., Karapatis N., Boillat E., and Glardon R., “Sintering of commercially pure titanium powder with a Nd: YAG laser sourceˮ, Acta Mater., Vol. 51, No. 6, pp. 1651-1662, 2003.##
Yadroitsev I., Krakhmalev P., and Yadroitsava I., “Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolutionˮ, J. Alloys Compd., Vol. 583, pp. 404-409, 2014.##
Kou S., “Welding metallurgyˮ, New Jersey, USA, pp. 431-446, 2003.##
Fu C. and Guo Y., “3-dimensional finite element modeling of selective laser melting Ti-6Al-4V alloyˮ, in 25th Annual International Solid Freeform Fabr Symp Proc, pp. 1129-1144, 2014.##
Soylemez E., “Modeling the Melt Pool of the Laser Sintered Ti6al4v Layers with Goldak’S Double-Ellipsoidal Heat Sourceˮ, in Proceedings of the 29th Annual International Solid Freeform Fabr Symp Proc, Austin, TX, USA, pp. 13-15, 2018.##
Ghorashi, S. A., Sadegh Yazdi, M., Hosseinzadeh, M. H., & Mousavi Kani, S. M. (2021). The Study of Scan Speed and Laser Power Effects on the Molten Pool in Selective Laser Melting of Ti6Al4V Based on the Molten Motion Equations. Aerospace Mechanics, 17(3), 1-15.
MLA
Seyed Ali Ghorashi; Milad Sadegh Yazdi; Mohammad Hadi Hosseinzadeh; Seyyed Mohssen Mousavi Kani. "The Study of Scan Speed and Laser Power Effects on the Molten Pool in Selective Laser Melting of Ti6Al4V Based on the Molten Motion Equations", Aerospace Mechanics, 17, 3, 2021, 1-15.
HARVARD
Ghorashi, S. A., Sadegh Yazdi, M., Hosseinzadeh, M. H., Mousavi Kani, S. M. (2021). 'The Study of Scan Speed and Laser Power Effects on the Molten Pool in Selective Laser Melting of Ti6Al4V Based on the Molten Motion Equations', Aerospace Mechanics, 17(3), pp. 1-15.
VANCOUVER
Ghorashi, S. A., Sadegh Yazdi, M., Hosseinzadeh, M. H., Mousavi Kani, S. M. The Study of Scan Speed and Laser Power Effects on the Molten Pool in Selective Laser Melting of Ti6Al4V Based on the Molten Motion Equations. Aerospace Mechanics, 2021; 17(3): 1-15.