[1] Brüls O, Bastos Jr G, Seifried R. A stable inversion method for feedforward control of constrained flexible multibody systems. Journal of computational and nonlinear dynamics. 2014;9(1).##
[2] Magee DP, Book WJ. Eliminating multiple modes of vibration in a flexible manipulator. In Proceedings IEEE International Conference on Robotics and Automation 1993: 474-479.##
[3] Rhim S, Book WJ. Adaptive time-delay command shaping filter for flexible manipulator control. IEEE/ASME Transactions on Mechatronics. 2004 Dec 27;9(4):619-26.##
[4] Mohamed Z, Tokhi MO. Command shaping techniques for vibration control of a flexible robot manipulator. Mechatronics. 2004 Feb 1;14(1):69-90.##
[5] Jackson L, Cable P. Digital Filters and Signal Processing by LB Jackson. Acoustical Society of America; 1987.##
[6] Lismonde A. Geometric modeling and inverse dynamics of flexible manipulators. 2020.##
[7] Theodore RJ, Ghosal A. Comparison of the assumed modes and finite element models for flexible multilink manipulators. The International journal of robotics research. 1995 Apr;14(2):91-111.##
[8] Seifried R, Held A, Dietmann F. Analysis of feed-forward control design approaches for flexible multibody systems. Journal of System Design and Dynamics. 2011;5(3):429-40.##
[9] Seifried R. Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody System Dynamics. 2011;27(1):75-93.##
[10] Isidori A. Nonlinear control systems. Springer-Verlag; 1997.##
[11] Lismonde A, Sonneville V, Brüls O. A geometric optimization method for the trajectory planning of flexible manipulators. Multibody System Dynamics. 2019;47(4):347-62.##
[12] Devasia S, Chen D, Paden B. Nonlinear inversion-based output tracking. IEEE Transactions on Automatic Control. 1996;41(7):930-42.##
[13] Seifried R. Dynamics of underactuated multibody systems: Springer; 2014.##
[14] Bastos G, Seifried R, Brüls O. Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody System Dynamics. 2013;30(3):359-76.##
[15] Seifried R, Bastos Jr G, Brüls O. Computation of bounded feed‐forward control for underactuated multibody systems using nonlinear optimization. PAMM. 2011;11(1):69-70.##
[16] Taylor DG, Li S. Stable inversion of continuous-time nonlinear systems by finite-difference methods. IEEE Transactions on Automatic Control. 2002;47(3):537-42.##
[17] Morrison DD, Riley JD, Zancanaro JF. Multiple shooting method for two-point boundary value problems. Communications of the ACM. 1962;5(12):613-4.##
[18] Bastos G, Brüls O. Analysis of open-loop control design and parallel computation for underactuated manipulators. Acta Mechanica. 2020;231(6):2439-56.##
[19] Betts JT. Practical methods for optimal control and estimation using nonlinear programming: SIAM; 2010.##
[20] Absil PA, Mahony R, Sepulchre R. Optimization algorithms on matrix manifolds. InOptimization Algorithms on Matrix Manifolds 2009 Apr 11. Princeton University Press.##
[21] Bellman R. Dynamic programming. Science. 1966;153(3731):34-7.##
[22] Bakke V. A maximum principle for an optimal control problem with integral constraints. Journal of Optimization Theory and Applications. 1974;13(1):32-55.##
[23] Diehl M, Bock HG, Diedam H, Wieber P-B. Fast direct multiple shooting algorithms for optimal robot control. Fast motions in biomechanics and robotics: Springer; 2006. p. 65-93.##
[24] Chung J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. 1993.##
[25] Newmark NM. A method of computation for structural dynamics. Journal of the engineering mechanics division. 1959;85(3):67-94.##