Modeling the Oscillatory Behavior of Carbon Nano-onions Inside Single-walled Carbon Nanotubes Based on the Continuum Approximation Method

Document Type : Dynamics, Vibrations, and Control

Author

Assistant Professor, Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran

Abstract

In this paper, oscillatory behavior of carbon nano-onions inside single-walled carbon nanotubes is investigated. To this end, using the continuum approximation along with the Lennard-Jones potential function, analytical expressions are derived for the evaluation of van der Waals interaction force and potential energy of system. Based on the Newton’s second law and ignoring the frictional forces, the motion equation is solved numerically and the time histories of displacement and velocity of oscillator are obtained. Moreover, in order to determine the oscillation frequencies of system, a semi-analytical expression is derived based on the conservation of mechanical energy principle. The proposed expression of frequency is dependent on both geometrical parameters and initial conditions. Using this expression, a comprehensive study is performed on the oscillatory behavior of carbon nano-onions inside single-walled carbon nanotubes by varying system parameters. Numerical results indicate that the generated frequency of this type of nano-oscillators is in the gigahertz range. It is further observed that the escape velocity as well as the maximum oscillation frequency decrease as the number of layers of carbon nano-onion increases.

Highlights

  • Frequency of carbon onion-carbon nanotube nano-oscillators is in the gigahertz range.
  • Lighter cores generate higher maximum frequencies.
  • Escape velocity is reduced by increasing the layers of carbon nano-onions. 

Keywords


Smiley face

[1] Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science. 2000;289(5479):602##.  
[2] Ajori S, Sadeghi F, Ansari R. Dynamic behavior of chloride ion-electrically charged open carbon nanocone oscillators: A molecular dynamics study. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2021;235(21):5709-5717##.
[3] Liu R, Zhao Y, Sui C, Sang Y, Hao W, Li J, Wu J, He X, Wang C. Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science. 2023;222: 112105##.    
[4] Al Salihi HA, Fayad MA, Slepchenkov M, Shunaev V. Nanoscale oscillator on the base of single-walled carbon nanotube with internal fullerenes C36 and C80. Laser Physics, Photonic Technologies, and Molecular Modeling. 2020;11458:239##.  
[5] Sarapat P, Hill JM, Baowan D. Mechanics of atoms interacting with a carbon nanotorus: Optimal configuration and oscillation behaviour. Philosophical Magazine. 2019;99(11):1386##. 
[6] Minkel JR. Focus: nanotubes in the fast lane. Physics. 2002;9:4##.
[7] Damnjanović M, Milošević I, Vuković T, Sredanović R. Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes. Physical Review B. 1999;60(4):2728##. 
[8] Awad AA, Houshang A, Zahedinejad M, Khymyn R, Åkerman J. Width dependent auto-oscillating properties of constriction based spin Hall nano-oscillators. Applied Physics Letters. 2020;116(23): 232401##.
[9] Hem J, Buda-Prejbeanu LD, Ebels U. Power and phase dynamics of injection-locked spin torque nano-oscillators under conservative and dissipative driving signals. Physical Review B. 2019; 100(5):054414##.
[10] Li L, Chen L, Liu R, Du Y. Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators. Chinese Physics B. 2020;29(11):117102##.
[11] Li C, Wang S, Xu N, Yang X, Liu B, Yang B, Fang L. Spin-torque nano-oscillators based on radial vortex in the presence of interface Dzyaloshinskii-Moriya interaction. Journal of Magnetism and Magnetic Materials. 2020;498:166155##.
[12] Guo W, Guo Y, Gao H, Zheng Q, Zhong W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Physical Review Letters. 2003; 91(12):125501##.
[13] Song HY, Zha XW. Molecular dynamics study of effects of radius and defect on oscillatory behaviors of C60-nanotube oscillators. Physical Letters A. 2009;373(11):1058##.
[14] Girifalco LA. Interaction potential for carbon (C60) molecules. The Journal of Physical Chemistry. 1991;95(14):5370##.
[15] Stevens K, Thamwattana N, Tran‐Duc T. Continuum modeling with functional Lennard–Jones parameters for DNA‐graphene Interactions. Advanced Theory and Simulations. 2023;6(5):2200896##.
[16] Sadeghi F, Ajori S. Dynamic behavior of lysozyme enzyme inside titania nanotubes: a continuum approach. The European Physical Journal Plus. 2022; 137(10):1178##.
[17] Alshehri MH. Continuum modelling for encapsulation of anticancer drugs inside nanotubes. Mathematics. 2021;9(19):2469##.
[18] Ansari R, Kazemi E, Mahmoudinezhad E, Sadeghi F. Preferred position and orientation of anticancer drug cisplatin during encapsulation into single-walled carbon nanotubes. Journal of Nanotechnology in Engineering and Medicine. 2012;3(1):010903##.
[19] Ansari R, Alisafaei F, Alipour A, Mahmoudinezhad E. On the van der Waals interaction of carbon nanocones.  Journal of Physics and Chemistry of Solids. 2012; 73(6):751##.
[20] Baowan D, Thamwattana N, Tran-Duc T. Critical sizes for PET cylindrical and hourglass shaped pores for selective ion channels. Physica B: Condensed Matter. 2022;633:413476##.
[21] Hilder TA, Hill JM. Continuous versus discrete for interacting carbon nanostructures. Journal of Physics A: Mathematical and Theoretical. 2007;40(14):3851##.
[22] Ansari R, Sadeghi F, Ajori S. Continuum and molecular dynamics study of C60 fullerene–carbon nanotube oscillators. Mechanics Research Communications. 2013;47:18-23##.
[23] Ansari R, Gholami R. Dynamic stability analysis of multi-walled carbon nanotubes with arbitrary boundary conditions based on the nonlocal elasticity theory. Mechanics of Advanced Materials and Structures. 2017;24(14):1180-1188##.
[24] Ansari R, Gholami R, Sahmani S, Norouzzadeh A, Bazdid-Vahdati M. Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment. Acta Mechanica Solida Sinica. 2015;28(6):659-667##.
[25] Ansari R, Gholami R, Rouhi H. Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Composite Structures. 2015;126:216-226##.
[26] Ansari R, Gholami R, Ajori S. Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. Journal of Vibration and Acoustics. 2013;135(5):051016##.
[27] Baowan D, Hill JM. Force distribution for double-walled carbon nanotubes and gigahertz oscillators. Zeitschrift für angewandte Mathematik und Physik. 2007;58:857##.
[28] Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters. 2002;88(4):045503##.
[29] Cox BJ, Thamwattana N, Hill JM. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behaviour. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2007;463(2078):477##.
[30] Thamwattana N, Hill JM. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes. Journal of Nanoparticle Research. 2008;10:665-677##.
[31] Ansari R, Sadeghi F, Motevalli B. A comprehensive study on the oscillation frequency of spherical fullerenes in carbon nanotubes under different system parameters. Communications in Nonlinear Science and Numerical Simulation. 2013;18(3):769##.
[32] Ansari R, Sadeghi F, Darvizeh M. Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes. Physica B: Condensed Matter.  2016;482:28-37##.
[33] Ansari R, Sadeghi F, Ajori S. Oscillation characteristics of carbon nanotori molecules along carbon nanotubes under various system parameters. European Journal of Mechanics-A/Solids. 2017;62:67-79##.
[34] Cox BJ, Thamwattana N, Hill JM. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007;463(2078):461##.
[35] Jones JE. On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1924;106(738) :441-462##.
[36] Zheng Q, Liu JZ, Jiang Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Physical Review B. 2002;65(24):245409##.
Volume 19, Issue 4 - Serial Number 74
December 2023
Pages 135-148
  • Receive Date: 30 July 2023
  • Revise Date: 19 August 2023
  • Accept Date: 19 September 2023
  • Publish Date: 23 September 2023