Design of a Scaled Framework for Perforation Behavior Analysis of Red Blood Cell Membrane Subjected to Impact Loading by Nanoparticle

Document Type : Impact Mechanics

Authors

1 Ph.D. Student, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

2 Corresponding author: Associate Professor, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

Abstract

Presently there is not any known scaling method using scaled models to investigate mechanical behavior of cell which prepares executable scaled experiments for design of drug delivery systems by nanoparticles as a practical application. in this paper, for first time, based on the new finite-similitude scaling theory, scaled framework is developed for perforation behavior analysis of Red Blood Cell (RBCs) membrane subjected to impact loading by conducting experimental tests on large-scale models even made out of different materials such as rubbers with different hyperplastic constitutive laws.   Abaqus finite element software is employed to test the effectiveness of the finite-similitude theory. Validating numerical experiments under impact loading by experimental results, shows that behavior of red blood cell with Yeoh law can be predicted with good accuracy.  Among 8 selected trial material, number 7 with Mooney-Rivlin law is the best selection to scale RBC with error less than 5%. Also, if 10% error in result will be accepted, then number 2 with Yeoh law is the good choice for RBC scaling. Based on results, number 8 with Ogden law is the worst for RBC scaling.

Highlights

  • Red Blood Cell Mechanical Behavior Analysis in Drug Delivery by Nanoparticles
  • Abaqus finite element software is employed to test the effectiveness of the finite-similitude theory
  • Using finite similitude theory for scaling and doing experimental test on equivalent models with different dimensions and materials

Keywords


Smiley face

[1] Li S, Sun B. Advances in cell mechanics: Springer; 2012. DOI :10.1007/978-3-642-17590-9.
[2] Yang K, Ma Y-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature nanotechnology. 2010;5(8):579-83. DOI :10.1038/nnano.2010.141.
[3] Boroushaki T, Dekamin MG, Hashemianzadeh SM, Naimi-Jamal MR, Koli MG. A molecular dynamic simulation study of anticancer agents and UiO-66 as a carrier in drug delivery systems. Journal of Molecular Graphics and Modelling. 2022;113:108147. DOI :10.1016/j.jmgm.2022.108147.
[4] Ansari R, Kazemi E, Mahmoudinezhad E, Sadeghi F. Preferred position and orientation of anticancer drug cisplatin during encapsulation into single-walled carbon nanotubes. Journal of Nanotechnology in Engineering and Medicine. 2012; 3(1): 010903. DOI :10.1115/1.4006916.
[5] Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift Für Naturforschung C. 1973;28(11-12):693-703. DOI :10.1515/znc-1973-11-1209.
[6] Deuling H, Helfrich W. Red blood cell shapes as explained on the basis of curvature elasticity. Biophysical Journal. 1976;16(8):861-8.
[7] Zarda P, Chien S, Skalak R. Elastic deformations of red blood cells. Journal of Biomechanics. 1977;10(4):211-21. DOI :10.1016/0021-9290(77)90044-6.
[8] Shen H-S. Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environments. Mechanics Research Communications. 2013;54:83-95. DOI :10.1016/j.mechrescom.2013.10.003.
[9] Sahmani S, Aghdam M. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Mathematical Biosciences. 2018;295:24-35. DOI :10.1016/j.mbs.2017.11.002.
[10] Chee C, Lee H, Lu C. Using 3D fluid–structure interaction model to analyse the biomechanical properties of erythrocyte. Physics Letters A. 2008;372(9):1357-62. DOI :10.1016/j.physleta.2007.09.067.
[11] Riva L, Petrini C. A few ethical issues in translational research for gene and cell therapy. Journal of Translational Medicine. 2019;17:1-6. DOI :10.1186/s12967-019-02154-5.
[12] Sadeghi H, Davey K, Darvizeh R, Rajabiehfard R, Darvizeh A. An investigation into finite similitude for high-rate loading processes: advantages in comparison to dimensional analysis and its practical implementation. International Journal of Impact Engineering. 2020;140:103554. DOI :10.1016/j.ijimpeng.2020.103554.
[13] Oshiro RE, Alves M. Scaling impacted structures. Archive of applied mechanics. 2004;74:130-45. DOI :10.1007/BF02637214.
[14] Jiang P, Tian C, Xie R, Meng D. Experimental investigation into scaling laws for conical shells struck by projectiles. International Journal of Impact Engineering. 2006;32(8):1284-98. DOI :10.1016/j.ijimpeng.2004.09.015.
[15] Alves M, Oshiro RE. Scaling impacted structures when the prototype and the model are made of different materials. International Journal of Solids and Structures. 2006;43(9):2744-60. DOI :10.1016/j.ijsolstr.2005.03.003.
[16] Mazzariol LM, Alves M. Experimental verification of similarity laws for impacted structures made of different materials. International Journal of Impact Engineering. 2019;133:103364. DOI :10.1016/j.ijimpeng.2019.103364.
[17] Davey K, Darvizeh R, Al-Tamimi A. Scaled metal forming experiments: a transport equation approach. International Journal of Solids and Structures. 2017;125:184-205. DOI :10.1016/j.ijsolstr.2017.07.006.
[18] Ochoa-Cabrero R, Alonso-Rasgado T, Davey K. Scaling in biomechanical experimentation: a finite similitude approach. Journal of the Royal Society Interface. 2018;15(143):20180254. DOI :10.1098/rsif.2018.0254.
[19] Ochoa-Cabrero R, Alonso-Rasgado T, Davey K. Zeroth-order finite similitude and scaling of complex geometries in biomechanical experimentation. Journal of the Royal Society Interface. 2020;17(167):20190806. DOI :10.1098/rsif.2019.0806.
[20] Moghaddam M, Darvizeh R, Davey K, Darvizeh A. Scaling of the powder compaction process. International Journal of Solids and Structures. 2018;144:192-212. DOI :10.1016/j.ijsolstr.2018.05.002.
[21] Davey K, Darvizeh R, Golbaf A, Sadeghi H. The breaking of geometric similarity. International Journal of Mechanical Sciences. 2020;187:105925. DOI :10.1016/j.ijmecsci.2020.105925.
[22] Rayleigh. The principle of similitude. Nature. 1915;95(2373):202-3.
[23] Selvadurai A. Deflections of a rubber membrane. Journal of the Mechanics and Physics of Solids. 2006;54(6):1093-119. DOI :10.1016/j.jmps.2006.01.001.
[24] Yoon Y-Z, Kotar J, Yoon G, Cicuta P. The nonlinear mechanical response of the red blood cell. Physical Biology. 2008;5(3):036007. DOI :10.1088/1478-3975/5/3/036007.
[25] Yoon D, You D. Continuum modeling of deformation and aggregation of red blood cells. Journal of Biomechanics. 2016;49(11):2267-79. DOI :10.1016/j.jbiomech.2015.11.027.
[26] Ahmad IL, Ahmad MR. A two component red blood cell model for single cell mechanic. 2006.
[27] Carlescu V, Prisacaru G, Olaru D. FEM simulation on uniaxial tension of hyperelastic elastomers. Applied Mechanics and Materials. 2014;659:57-62. DOI :10.4028/www.scientific.net/AMM.659.57.
[28] Barthes-Biesel D, Diaz A, Dhenin E. Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. Journal of Fluid Mechanics. 2002;460:211-22. DOI :10.1017/S0022112002008352.
[29] Rosendahl P, Drass M, Felger J, Schneider J, Becker W. Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers. International Journal of Solids and Structures. 2019;166:32-46. DOI :10.1016/j.ijsolstr.2019.01.030.
[30] Chizari M, Wang B. Estimating material property and failure of a living cell: numerical study. International Journal of Applied Mechanics. 2009;1(02):339-47. DOI :10.1142/S1758825109000125.
[31] Renaud C, Cros J-M, Feng Z-Q, Yang B. The Yeoh model applied to the modeling of large deformation contact/impact problems. International Journal of Impact Engineering. 2009;36(5):659-66. DOI :10.1016/j.ijimpeng.2008.09.008.
[32] Chen Z, Scheffer T, Seibert H, Diebels S. Macroindentation of a soft polymer: Identification of hyperelasticity and validation by uni/biaxial tensile tests. Mechanics of Materials. 2013;64:111-27. DOI :10.1016/j.mechmat.2013.05.003.
[33] Johlitz M, Diebels S. Characterisation of a polymer using biaxial tension tests. Part I: Hyperelasticity. Archive of Applied Mechanics. 2011;81:1333-49. DOI :10.1007/s00419-010-0480-1.
 
Volume 20, Issue 1 - Serial Number 75
Serial No. 75, Spring
April 2024
Pages 163-180
  • Receive Date: 10 October 2023
  • Revise Date: 25 October 2023
  • Accept Date: 12 December 2023
  • Publish Date: 15 April 2024