[2] Bewlay BP, Nag S, Suzuki A, Weimer MJ. TiAl alloys in commercial aircraft engines. Materials at High Temperatures. 2016;33:549-59
DOI 10.1080/09603409.2016.1183068##.
[4] Clemens H, Mayer S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Advance Engineering Materials. 2013;15(4):191-215
DOI 10.1002/adem.201200231##.
[5] Ramanujan RV. Phase transformations in γ based titanium aluminides. International Materials Reviews. 2000;45(6):217-40
DOI 10.1179/095066000101528377##.
[6] Tan Y, Wang Y, You X, Liu H, Li P. Effect of Solution Heat Treatment on the Microstructure and Hardness of theTi-48Al-2Cr-2Nb Alloy Prepared by Electron Beam Smelting. Journal of Materials Engineering and Performance. 2021;31:1387–96
DOI 10.1007/s11665-021-06231-z##.
[7] Ahmadi M, Hosseini SR, Hadavi SMM. Effects of Heat Treatment on Microstructural Modification of As-Cast Gamma-TiAl Alloy. Journal of Materials Engineering and Performance. 2016;25(6):2138-46
DOI 10.1007/s11665-016-2067-7 ##.
[8] Kothari K, Radhakrishnan R, Wereley NM. Advances in gamma titanium aluminides and their manufacturing techniques. Progress in Aerospace Sciences. 2012;55:1-16
DOI 10.1016/j.paerosci.2012.04.001##.
[9] Jian-Chao H, Shu-Long X, Tian Jing C, Xu Y-Y, Wang L-J, Jia X-P, et al. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Metals. 2016;35:26-34
DOI 10.1007/s12598-015-0626-y##.
[10] Kościelna A, Szkliniarz W. Effect of cyclic heat treatment parameters on the grain refinement of Ti–48Al–2Cr–2Nb alloy. Materials Characterization. 2009;60(10):1158-62
DOI 10.1016/j.matchar.2009.03.008##.
[11] Charpentier M, Hazotte A, Daloz D. Lamellar transformation in near-Gamma TiAl alloys—Quantitative analysis of kinetics and microstructure. Materials Science and Engineering A. 2008;491:321-30
DOI 10.1016/j.msea.2008.02.009##.
[12] Gao Z, Yang J, Wu Y, Hu R, Kim S-L, Kim Y-W. A Newly Generated Nearly Lamellar Microstructure in Cast Ti-48Al-2Nb-2Cr Alloy for High-Temperature Strengthening. Metallurgical and Materials Transactions A. 2019;50:5839–52
DOI 10.1007/s11661-019-05491-8##.
[13] Rezaei H, Morakabati M, Momeni A. Evaluation of the Effect of Heat Treatment on Structural Changes and Mechanical Properties of Ti-48Al-2Cr-2Nb Intermetallic. Founding Research Journal. 2022;6(2):125-32
DOI 10.22034/FRJ.2023.384529.1173##.
[14] Shih D, Scarr G. High-Temperature Deformation Behavior of the γ Alloy Ti-48Ai-2Cr-2Nb. MRS Online Proceedings Library. 1990;213:727-32##.
[15] Leyens C, Peters M. Titanium and titanium alloys - Fundamentals and applications: Wiley‐VCH Verlag GmbH & Co. KGaA; 2003
DOI 10.1002/3527602119##.
[16] Semiatin SL, Seetharaman V, Weiss I. Hot workability of titanium and titanium aluminide alloys—an overview. Materials Science and Engineering A. 1998;243:1-24
DOI 10.1016/S0921-5093(97)00776-4##.
[17] Wang JN, Yang J, Xia Q, Wang Y. On the grain size refinement of TiAl alloys by cyclic heat treatment. Materials Science and Engineering A. 2002;329:118-23
DOI 10.1016/S0921-5093(01)01543-X##.
[18] Cupid D. Thermodynamic Assessment of the Ti-al-nb, Ti-al-cr, and Ti-al-mo Systems Gainesville: University of Florida; 2009
DOI 10.3139/146.110015##.
[19] Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics. 2000;8((9-11)):1283-312
DOI 10.1016/S0966-9795(00)00036-4##.
[20] Huang L. Microstructural Control and Alloy Design of the Ti-Al-Nb-W-B Alloys Knoxville university of Tennessee; 2008
DOI 10.1007/s11661-007-9113-x##.
[22] Yim S, Bian H, Aoyagi K, Chiba A. Effect of multi-stage heat treatment on mechanical properties and microstructure transformation of Ti–48Al–2Cr–2Nb alloy. Materials Science and Engineering: A. 2021;816
DOI 10.1016/j.msea.2021.141321##.
[23] Bibhanshu N, Suwas S. Globularisation of α2 phase in (α2 + γ) two-phase lamellar titanium aluminide by thermal cycling. Materials Letters. 2021;292:1-4 DOI
10.1016/j.matlet.2021.129617##.
[25] ASTM E 112: Standard test methods for determining average grain size. 2004##.
[26] Cao S, Xiao S, Chen Y, Xu L, Wang X, Han J, et al. Phase transformations of the L12-Ti3Al phase in γ-TiAl alloy. Materials & Design. 2017;121:61-8
DOI 10.1016/j.matdes.2017.02.047.##.
[27] Maruyama K, Yamaguchi M, Suzuki G, Zhu H, Kim HY, Yoo MH. Effects of lamellar boundary structural change on lamellar size hardening in TiAl alloy. Acta Materialia. 2004;52(17):5185-94
DOI 10.1016/j.actamat.2004.07.029##.
[28] Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. second ed: Elsevier; 2004##.
[29] Franzén SF, Karlsson J. Titanium Aluminide Manufactured by Electron Beam Melting. Gothenburg, Sweden: Chalmers University of Technology; 2010
DOI 20.500.12380/127716##.