Document Type : Dynamics, Vibrations, and Control
Authors
1 Ph.D. Student, Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran
2 Corresponding author: Associate Professor, Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran
3 Assistant Professor, Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran
Abstract
Highlights
[1] Jones H, editor The recent large reduction in space launch cost2018: 48th International Conference on Environmental Systems.##
[2] Banerjee A, Padhi R, editors. An optimal explicit guidance algorithm for terminal descent phase of lunar soft landing. AIAA Guidance, Navigation, and Control Conference; 2017.##
[3] Swaminathan S, Ghose D, editors. Real time powered descent guidance algorithm for mars pinpoint landing with inequality constraints. AIAA Scitech 2020 Forum; 2020.##
[4] Anglim KSG. Minimum-fuel optimal trajectory for reusable first-stage rocket landing using Particle Swarm Optimization: California State University, Long Beach; 2016.##
[5] Li Y, Chen W, Zhou H, Yang L. Conjugate gradient method with pseudospectral collocation scheme for optimal rocket landing guidance. Aerospace Science and Technology. 2020;104:105999.##
[6] Guibout VM, Scheeres DJ. Solving two-point boundary value problems using generating functions: Theory and Applications to optimal control and the study of Hamiltonian dynamical systems. arXiv preprint math/0310475. 2003.##
[7] Guibout VM, Scheeres DJ. Solving two-point boundary value problems using generating functions: Theory and applications to astrodynamics. Modern Astrodynamics. 2006:53-105.##
[8] Guibout VM, Scheeres DJ. Solving relative two-point boundary value problems: Spacecraft formulation flight transfers application. Journal of guidance, control, and dynamics. 2004;27(4):693-704.##
[9] Di Lizia P, Armellin R, Ercoli-Finzi A, Berz M. High-order robust guidance of interplanetary trajectories based on differential algebra. Journal of Aerospace Engineering, Sciences and Applications. 2008;1(1):43-57.##
[10] Di Lizia P, Armellin R, Bernelli-Zazzera F, Berz M. High order optimal control of space trajectories with uncertain boundary conditions. Acta Astronautica. 2014;93:217-29.##
[11] Di Lizia P, Armellin R, Morselli A, Bernelli-Zazzera F. High order optimal feedback control of space trajectories with bounded control. Acta Astronautica. 2014;94(1):383-94.##
[12] Wittig A, Armellin R. High order transfer maps for perturbed Keplerian motion. Celestial Mechanics and Dynamical Astronomy. 2015;122(4):333-58.##
[13] Vetrisano M, Vasile M. Analysis of spacecraft disposal solutions from LPO to the Moon with high order polynomial expansions. Advances in Space Research. 2017;60(1):38-56.##
[14] Sun Z-J, Di Lizia P, Bernelli-Zazzera F, Luo Y-Z, Lin K-P. High-order state transition polynomial with time expansion based on differential algebra. Acta Astronautica. 2019;163:45-55.##
[15] Morselli A, Armellin R, Di Lizia P, Zazzera FB. A high order method for orbital conjunctions analysis: sensitivity to initial uncertainties. Advances in Space Research. 2014;53(3):490-508.##
[16] Morselli A, Armellin R, Di Lizia P, Zazzera FB. A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation. Advances in Space Research. 2015;55(1):311-33.##
[17] Moghadasian M, Roshanian J. Optimal Landing of Unmanned Aerial Vehicle Using Vectorised High Order Expansions Method. Modares Mechanical Engineering. 2019;19(11):2761-9.##
[18] Moghadasian M, Roshanian J. Continuous maneuver of unmanned aerial vehicle using High Order Expansions method for optimal control problem. Modares Mechanical Engineering. 2018;17(12):382-90.##
[19] Moghadasian M, Roshanian J. Approximately optimal manoeuvre strategy for aero-assisted space mission. Advances in Space Research. 2019;64(2):436-50.##
[20] Çimen T. State-dependent Riccati equation (SDRE) control: a survey. IFAC Proceedings Volumes. 2008;41(2):3761-75.##
[21] Pearson J. Approximation methods in optimal control I. Sub-optimal control. International Journal of Electronics. 1962;13(5):453-69.##
[22] Cloutier JR, D’Souza CN, Mracek CP, editors. Nonlinear regulation and nonlinear H∞ control via the state-dependent Riccati equation technique: Part 1, theory. Proceedings of the international conference on nonlinear problems in aviation and aerospace; 1996: Embry Riddle University.##
[23] Cloutier J, D'Souza C, Mracek C, editors. Nonlinear regulation and nonlinear $ H_ {infty} $ control via the state-dependent Riccati equation technique: Part2 Examples. Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace; 1996.##
[24] Cloutier JR, editor State-dependent Riccati equation techniques: an overview. Proceedings of the 1997 American control conference (Cat No 97CH36041); 1997: IEEE.##
[25] Mracek CP, Cloutier JR. Control designs for the nonlinear benchmark problem via the state‐dependent Riccati equation method. International Journal of robust and nonlinear control. 1998;8(4‐5):401-33.##
[26] Cloutier JR, Stansbery DT, editors. The capabilities and art of state-dependent Riccati equation-based design. Proceedings of the 2002 American Control Conference (IEEE Cat No CH37301); 2002: IEEE.##
[27] Wernli A, Cook G. Suboptimal control for the nonlinear quadratic regulator problem. Automatica. 1975;11(1):75-84.##
[28] VADALI S, editor Examination of the optimal nonlinear regulator problem. Guidance, Navigation and Control Conference; 1988.##
[29] Banks S, Mhana K. Optimal control and stabilization for nonlinear systems. IMA journal of mathematical control and information. 1992;9(2):179-96.##
[30] Gong C, Thompson S. A comment on ‘Stabilization and optimal control for nonlinear systems’. IMA Journal of Mathematical Control and Information. 1995;12(4):395-8.##
[31] Tsiotras P, Corless M, Rotea M. Counterexample to a recent result on the stability of nonlinear systems. IMA Journal of Mathematical Control and Information. 1996;13(2):129-30.##
[32] Mracek CP, Cloutier JR, editors. Missile longitudinal autopilot design using the state-dependent Riccati equation method. Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace; 1996.##
[33] Mracek C, Cloutier J, Cloutier J, Mracek C, editors. Full envelope missile longitudinal autopilot design using the state-dependent Riccati equation method. Guidance, Navigation, and Control Conference; 1997.##
[34] Wise KA, Sedwick JL, editors. Nonlinear control of agile missiles using state dependent Riccati equations. Proceedings of the 1997 American Control Conference (Cat No 97CH36041); 1997: IEEE.##
[35] Stansbery D, Cloutier J, editors. Nonlinear, hybrid bank-to-turn/skid-to-turn missile autopilot design. AIAA guidance, navigation, and control conference and exhibit; 2001.##
[36] Mracek CP. SDRE autopilot for dual controlled missiles. IFAC Proceedings Volumes. 2007;40(7):750-5.##
[37] ÇLimen T. A generic approach to missile autopilot design using state-dependent nonlinear control. IFAC Proceedings Volumes. 2011;44(1):9587-600.##
[38] Cloutier J, Stansbery D, editors. All-aspect acceleration-limited homing guidance. Guidance, Navigation, and Control Conference and Exhibit; 1999.##
[39] Ratnoo A, Ghose D. State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories. Journal of Guidance, Control, and Dynamics. 2009;32(1):320-6.##
[40] Vaddi S, Menon PK, Ohlmeyer EJ. Numerical state-dependent Riccati equation approach for missile integrated guidance control. Journal of guidance, control, and dynamics. 2009;32(2):699-703.
[41] Ewing CM. An analysis of a new nonlinear estimation technique: The state-dependent Ricatti equation method: University of Florida; 1999.##
[42] Parrish DK, Ridgely DB, editors. Attitude control of a satellite using the SDRE method. Proceedings of the 1997 American Control Conference (Cat No 97CH36041); 1997: IEEE.##
[43] Hammett KD, Hall CD, Ridgely DB. Controllability issues in nonlinear state-dependent Riccati equation control. Journal of guidance, control, and dynamics. 1998;21(5):767-73.##
[44] Stansbery DT, Cloutier JR, editors. Position and attitude control of a spacecraft using the state-dependent Riccati equation technique. Proceedings of the 2000 American Control Conference ACC (IEEE Cat No 00CH36334); 2000: IEEE.##
[45] Cloutier JR, Zipfel PH, editors. Hypersonic guidance via the state-dependent Riccati equation control method. Proceedings of the 1999 IEEE International Conference on Control Applications (Cat No 99CH36328); 1999: IEEE.##
[46] Harman RR, Bar-Itzhack IY. Pseudolinear and state-dependent Riccati equation filters for angular rate estimation. Journal of Guidance, Control, and Dynamics. 1999;22(5):723-5.##
[47] Chang I, Park S-Y, Choi K-H. Decentralized coordinated attitude control for satellite formation flying via the state-dependent Riccati equation technique. International Journal of Non-Linear Mechanics. 2009;44(8):891-904.##
[48] Lin L-G, Xin M. Computational enhancement of the SDRE scheme: general theory and robotic control system. IEEE Transactions on Robotics. 2020;36(3):875-93.##
[49] Lin L-G. Computationally Improved State-Dependent Riccati Equation Scheme for Nonlinear Benchmark System. IEEE/ASME Transactions on Mechatronics. 2020;26(2):1064-75.##
Keywords