تحلیل ارتعاشات اجباری تیر ویسکوالاستیک تحت اعمال ناگهانی نیروی متحرک هارمونیک و جریان جرمی متحرک

نویسندگان

دانشکده مهندسی مکانیک دانشگاه صنعتی سیرجان

چکیده

در مقاله حاضر، رفتار دینامیکی تیر ویسکوالاستیک تحت تأثیر نیروی متحرک هارمونیک و جریان جرمی بررسی شده است. معادله حاکم بر حرکت، به­صورت نیمه­تحلیلی و با استفاده از روش گالرکین و رانگ­کوتای مرتبه چهار تحلیل شده است. نتایج این بررسی برای چهار شرایط مرزی مختلف، دوسرمفصل، دوسرگیردار، گیردار- مفصل و گیردار- آزاد به­دست آمده است. نیروی متحرک به­صورت سرعت یکنواخت، شتاب تندشونده و کندشونده و جریان جرمی با سرعت یکنواخت در نظر گرفته شده است. در این بررسی ابتدا تیر مستقیم بوده و در یک زمان خاص به یک­باره جریان جرمی و همچنین نیرو به­طور همزمان و غیرهمزمان بر تیر اثر می­گذارند و بعد از عبور نیرو از انتهای آن، تأثیر نیرو خارجی بر تیر حذف می­شود. در این بررسی تأثیر تغییرات پارامترهای مختلف از جمله نسبت جرمی، حالت­های مختلف حرکت، تأثیر زمان اعمال نیرو و جریان جرمی و تأثیر شرایط مرزی مختلف بر تغییر مکان تیر مورد مطالعه قرار می­گیرد. برای اعتبارسنجی مسئله از مقایسه پاسخ به­دست­آمده در غیاب جریان جرمی با پژوهش­های قبلی اسـتفاده شده است. همچنین، به­عنوان مقایسه­ای دیگر، نتـایج تغییر مکان به­دست­آمده در اینجا با نتایج حاصل از روش تربیع دیفرانسیلی تعمیم یافته (GDQ)، مقایسه شده و انطباق خوب جـواب­هـا مشاهده گردید.

کلیدواژه‌ها


  1. Willis, R. “The Effect Produced by Causing Weights to Travel Over Elastic Bars”, Report of Commissioners Appointed to Inquire Into the Application of Iron to Railway Structures, Appendix, HM Stationery Office, London, UK, 1847.
  2. Mackertich, S. “Response of a Beam To a Moving Mass”, The Journal of the Acoustical Society of America, Vol. 92, No. 3, pp. 1766-1769, 1992.
  3. Green, M. and Cebon, D. “Dynamic Interaction Between Heavy Vehicles and Highway Bridges”, Computers & Structures, Vol. 62, No. 2, pp. 253-264, 1997.
  4. Mofid, M. and Akin, J. E. “Discrete Element Response of Beams with Traveling Mass”, Advances in Engineering Software, Vol. 25, No. 2, pp. 321-331, 1996.
  5. Lee, H. “Transverse Vibration of a Timoshenko Beam Acted on by an Accelerating Mass”, Applied Acoustics, Vol. 47, No. 4, pp. 319-330, 1996.
  6. Auciello, N. “On the Transverse Vibrations of Non-uniform Beams with Axial Loads and Elastically Restrained Ends”, International Journal of Mechanical Sciences, Vol. 43, No. 1, pp. 193-208, 2001.
  7. Chen, Y.H., Huang, Y.H. and Shih, C.T. “Response of an Infinite Timoshenko Beam on a Viscoelastic Foundation to a Harmonic Moving Load”, Journal of Sound and Vibration”, Vol. 241, No. 5, pp. 809-824, 2001.
  8. Wu, J.S. and Shih, P.Y. “The Dynamic Analysis of a Multispan Fluid-Conveying Pipe Subjected to External Load”, Journal of Sound and Vibration, Vol. 239, No. 2, pp. 201-215, 2001.
  9. Yavari, A., Nouri, M. and Mofid, M. “Discrete Element Analysis of Dynamic Response Timoshenko Beams Under Moving Mass”, Advances in Engineering Software, Vol. 33, No. 3, pp. 143-153, 2002.
  10. Lee, U., Kim, J. and Oh, H. “Spectral Analysis for the Transverse Vibration of an Axially Moving Timoshenko Beam”, Journal of Sound and Vibration, Vol. 271, No. 3, pp. 685-703, 2004.
  11. Kargarnovin, M.H. and Younesian, D. “Dynamics of Timoshenko Beams on Pasternak Foundation Under Moving Load”, Mechanics Research Communications, Vol. 31, No. 6, pp. 713-723, 2004.
  12. Biondi, B., Muscolino, G. and Sidoti, A. “Methods for Calculating Bending Moment and Shear Force in the Moving Mass Problem”, Journal of Vibration and Acoustics, Vol. 126, No. 1, pp. 542-552, 2004.
  13. Şimşek, M. “Dynamic Analysis of an Embedded Microbeam Carrying a Moving Microparticle Based on the Modified Couple Stress Theory”, International Journal of Engineering Science, Vol. 48, No. 12, pp. 1721-1732, 2010.
  14. Bulut, H. and Kelesoglu, O. “Comparing Numerical Methods for Response of Beams with Moving Mass”, Advances in Engineering Software, Vol. 41, No. 7, pp. 976-980, 2010.
  15. Sharbati, E. and Szyszkowski, W. “A new FEM Approach for Analysis of Beams with Relative Movements of Masses”, Finite Elements in Analysis and Design, Vol. 47, No. 9, pp. 1047-1057, 2011.
  16. Sadeghi, M.H. and Karimi-Dona, M.H. “Dynamic Behavior of a Fluid Conveying Pipe Subjected to a Moving Sprung Mass–an FEM-state Space Approach”, International Journal of Pressure Vessels and Piping, Vol. 88, No. 4, pp. 123-131, 2011.
  17. Yu, D., Wen, J., Shen, H. and Wen, X. “Propagation of Steady-State Vibration in Periodic Pipes Conveying Fluid on Elastic Foundations with External Moving Loads”, Physics Letters A, Vol. 376, No. 45, pp. 3417-3422, 2012.
  18. Kargarnovin, M.H., Ahmadian, M.T. and Jafari-Talookolaei, R.A. “Dynamics of a Delaminated Timoshenko Beam Subjected to a Moving Oscillatory Mass”, Mechanics Based Design of Structures and Machines, Vol. 40, No. 2, pp. 218-240, 2012.
  19. Azam, S.E., Mofid, M. and Khoraskani, R.A. “Dynamic Response of Timoshenko Beam Under Moving Mass”, Scientia Iranica, Vol. 20, No.1, pp. 50-56, 2013.
  20. Jafari, A.A. and Fathabadi, M. “Forced Vibration of FGM Timoshenko Beam with Piezoelectric Layers Carrying Moving Load”, Aerospace Mechanics Journal, Vol. 9, No.2, pp. 69-67, 2013 (in Persian).
  21. Ghomeshi Bozorg, M. and Keshmiri, M. “Stability Analysis of a Beam Under the Effect of Moving Masses Using Homotopy Perturbation Method”, Journal of Numerical Methods in Engineering, Vol. 34. No. 1, pp. 79-95, 2015 (in Persian).
  22. Pourshahsavari, H., Ghorbani, E. and Keshmiri, M. “Modal Analysis of a Beam Mass System Using Time Varying Modal Analysis Methods”, Modares Mechanical Engineering, Vol. 13, No.8, pp. 42-56, 2013 (in Persian).
  23. Biglari, H. and Azvar, M. “On the Effects of Core Parameters on Elastodynamic Response of Timoshenko Composite Sandwich Beam Under Moving Mass”, Modares Mechanical Engineering, Vol. 14, No. 2, pp. 63-69, 2014 (in Persian).
  24. Misiurek, K. and Śniady, P. “Vibrations of Sandwich Beam Due to a Moving Force”, Composite Structures, Vol. 104, No. 1, pp. 85-93, 2013.
  25. Nikkhoo, A., Farazandeh, A., Hassanabadi, M.E. and Mariani, S. “Simplified Modeling of Beam Vibrations Induced by a Moving Mass by Regression Analysis”, Acta Mechanica, Vol. 226, No. 7, pp. 2147-2157, 2015.‏
  26. Eftekhari, S.A. “A Modified Differential Quadrature Procedure for Numerical Solution of Moving Load Problem”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Doi: 10.1177/0954406215584630, pp.1-17, 2015.
  27. Eftekhari, S.A. “A Differential Quadrature Procedure with Regularization of the Dirac-delta Function for Numerical Solution of Moving Load Problem”, Latin American Journal of Solids and Structures, Vol. 12, No. 7, pp. 1241-1265, 2015.
  28. Eftekhari, S.A. “A Differential Quadrature Procedure for Linear and Nonlinear Steady State Vibrations of Infinite Beams Traversed by a Moving Point Load”, Meccanica, Doi: 10.1007/s11012-016-0373-7, 2016.
  29. Öz, H. R. and Pakdemirli, M. “Vibrations of an axially moving beam with time-dependent Velocity”, Journal of Sound and Vibration, Vol. 227, No. 2, pp. 239-257, 1999.
  30. Öz, H.R., Pakdemirli, M. and Boyacı, H. “Non-linear Vibrations and Stability of an Axially Moving Beam with Time-Dependent Velocity”, International Journal of Non-Linear Mechanics, Vol. 36, No. 1, pp. 107-115, 2001.
  31. Pakdemirli, M. and Öz, H.R. “Infinite Mode Analysis and Truncation to Resonant Modes of Axially Accelerated Beam Vibrations”, Journal of Sound and Vibration, Vol. 311, No. 3, pp. 1052-1074, 2008.
  32. Benjamin, T. B. “Dynamics of a System of Articulated Pipes Conveying Fluid. I. Theory”, The Royal Society, Vol. 261, No. 1307, pp. 457-486, 1961.‏
  33. Ghavanloo, E. and Fazelzadeh, S.A. “Flow-Thermoelastic Vibration and Instability Analysis of Viscoelastic Carbon Nanotubes Embedded in Viscous Fluid”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 17-24, 2011.
  34. Hosseini, M. and Fazelzadeh, S. “Thermomechanical Stability Analysis of Functionally Graded Thin-Walled Cantilever Pipe with Flowing Fluid Subjected to Axial Load”, International Journal of Structural Stability and Dynamics, Vol. 11, No. 3, pp. 513-534, 2011.
  35. Fryba, L. “Vibration of Solids and Structures Under Moving Loads”, Thomas Telford, 1999.
  36. Hilal, M. A. and Zibdeh, H. “Vibration Analysis of Beams with General Boundary Conditions Traversed by a Moving Force”, Journal of Sound and Vibration, Vol. 229, No. 2, pp. 377-388, 2000.
  37. Hilal, M. A. and Mohsen, M. “Vibration of Beam with General Boundary Conditions Due to a Moving Harmonic Load”, Journal of Sound and Vibration, Vol. 232, No. 4, pp. 703-717, 2000.