تحلیل استاتیکی ورق ضخیم هدفمند پیزوالکتریک براساس تئوری مرتبه بالاتر تغییر شکل برشی و عمودی

نویسندگان

1 دانشکده مهندسی مکانیک دانشگاه ولیعصر(عج) رفسنجان

2 دانشکده مهندسی مکانیک دانشگاه شهید باهنر کرمان

چکیده

در این مقاله تحلیل استاتیکی ورق ضخیم هدفمند پیزوالکتریک با استفاده از تئوری جدید مرتبه بالاتر تغییر شکل برشی و عمودی باترا و ویدولی، صورت گرفته است. مزیت این تئوری نسبت به تئوری‌های برشی این است که اثرات تغییر شکل برشی و عمودی در راستای ضخامت درنظر گرفته می‌شوند و خیز ورق در امتداد ضخامت ثابت فرض نمی‌شود. برای بیان خواص مکانیکی و الکتریکی ورق، از تابع نمایی در امتداد ضخامت استفاده شده ­است. سه مؤلفه‌ میدان جابجایی در امتداد ضخامت با استفاده از چندجمله‌ای‌های لژاندر بسط داده می‌شوند و با استفاده از اصل کار مجازی معادلات حاکم بر ورق به­دست می‌آیند. در نهایت تأثیر شرایط مرزی الکتریکی متفاوت (مداربسته، مدارباز و بسته و بارگذاری الکتریکی) روی دو سطح بالا و پایین ورق بررسی شده ­است.  

کلیدواژه‌ها


  1. Batra, R.C. and Vidoli, S. "Higher Order Piezoelectric Plate Theory Derived From a Three-Dimensional Variational Principle", AIAA Journal, Vol. 40, No. 1, pp. 91–104, 2002.
  2. Reissner, E. "On The Theory of Bending of Elastic Plates", Journal of Mathematics and Physics, Vol. 23, No. 2, pp. 184-191, 1944.
  3. Mindlin, R.D., Schaknow, A., and Deresiewicz, H. "Flexural Vibration of Rectangular Plates", Journal of Applied Mechanics, Vol. 23, No. 2, pp. 430-436, 1956.
  4. Reddy, J.N. "A Simple Higher-Order Theory for Laminated Composite Plates", Journal of Applied Mechanics, Vol. 51, No. 4, pp. 745–752, 1984.
  5. Batra, R.C. "Higher Order Shear and Normal Deformable Theory for Functionally Graded Incompressible Linear Elastic Plates", Journal of Thin-Walled Structures, Vol. 45, No. 12, pp. 974–982, 2007.
  6. Sheikholeslami, S.A. and Saidi, A.R. "Vibration Analysis of Functionally Graded Rectangular Plates Resting on Elastic Foundation Using Higher-Order Shear and Normal Deformable Plate Theory", Composite Structures Journal, Vol. 106, pp. 350- 361, 2013.
  7. Bailey, T. and Hubbard, J.E. "Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam", Journal of Guid. Control Dynamic, Vol. 8, No. 5, pp. 605–611, 1985.
  8. Tiersten, H.F. "Linear Piezoelectric Plate Vibrations", New York, Plenum. 1969.
  9. Liu, G.R. and Tani, J. "Surface waves in Functionally Gradient Piezoelectric Plates". Journal of Vibration and Acoustics. Vol. 116, No. 4, pp. 440–448, 1994.
  10. Ding, H.J., Xu, R.Q., Chi, Y.W., and Chen, W.Q. "Free Axisymmetric Vibration of Transversely Isotropic Piezoelectric Circular Plates". International Journal of Solids Structure. Vol. 36, No. 6, pp. 4629–4652, 1999.
  11. Wang, J. and Yang, J. "Higher-Order Theories of Piezoelectric Plates and Applications", Applied Mechanics Reviews, Vol. 53, No. 4, pp. 83-99, 2000.
  12. Davis, C.L. and Lesieutre, G.A. "An Actively Tuned Solid-State Vibration Absorber Using Capacitive Shunting of Piezoelectric Stiffness". Journal of Sound and vibration, Vol. 232, No.3, pp. 601-617, 2000.
  13. Lim, C.W. and He, L.H. "Exact Solution of a Compositionally Graded Piezoelectric Layer under Uniform Stretch, Bending and Twisting", International. Journal of. Mechanic. Vol. 43, No. 5, pp. 2479–2492, 2001.
  14. Chen, W.Q. and Ding, H.J. "On Free Vibration of a Functionally Graded Piezoelectric Rectangular Plate". Journal of Acta Mechanica. Vol. 153, No. 3, pp. 207–216, 2002.
  15. Jin, B. and Zhong, Z. "A Moving Mode-III Crack In Functionally Graded Piezoelectric Material Permeable Problem". Journal of Mechanics Research Communications. Vol. 29, No. 11, pp. 217–224, 2002.
  16. Zhong, Z. and Shang, E.T. "Three-Dimensional Exact Analysis of A Simply Supported Functionally Gradient Piezoelectric Plate", International Journal of Solids and Structures, Vol. 40, No. 8, pp. 5335–5352, 2003.
  17. Lu, P., Lee, H.P., and Lu, C. "An Exact Solution for Functionally Graded Piezoelectric Laminates in Cylindrical Bending", International Journal of. Mechanic, Vol. 47, No. 7, pp. 437–458, 2005.
  18. Zhong, Z. and Yu, T. "Vibration of Simply Supported Functionally Graded Piezoelectric Rectangular Plate", Journal of Smart Materials and Structures, Vol. 15, No. 10, pp. 1404–1412, 2006.
  19. Najafizadeh, M.M. and Onvani, A. "Mechanical Buckling Analysis of a FGM Circular Plate with Actuator-Actuator Piezoelectric Layers, Based on Neutral-Axis’ Position and using Higher-Order Shear Deformation Plate Theory". Aerospace Mechanics Journal. Vol. 6, No. 4, pp. 43-54, 2010, (In Persian).
  20. Behjat B, Salehi, M., Armina, A., Sadighi, M., and Abbasi, M. "A Static and Dynamic Analysis of Functionally Graded Piezoelectric Plates under Mechanical and Electrical Loading", Scientia Iranica Journal, Vol. 184, No. 13, pp. 986–994, 2011.
  21. Bodaghi, M. and Shakeri, M. "An Analytical Approach for free Vibration and Transient Response of Functionally Graded Piezoelectric Cylindrical Panels Subjected To Impulsive Loads", Composite Structures Journal, Vol. 94, No. 15, pp. 1721–1735, 2012.
  22. Najafizade, M.M., Azari, Sh., and Salmani, F. "Bending Analysis of Rectangular Composite Plates with Piezoelectric Layers, Based on the First Order Shear Deformation Theory, Using The Extended Kantorovich Method", Aerospace Mechanics Journal, Vol. 6, No. 4, PP. 57-69, 2010, (In Persian).