شبیه سازی دینامیک مولکولی نانوکامپوزیت های زمینه پلیمری تقویت شده با نانولوله های کربنی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی دانشگاه آزاد اسلامی واحد تهران شمال باشگاه پژوهشگران جوان و نخبگان دانشگاه آزاد اسلامی واحد تهران شمال

2 گروه مهندسی شیمی دانشکده و پژوهشکده فنی و مهندسی دانشگاه جامع امام حسین (ع)

3 گروه مهندسی مکانیک دانشکده و پژوهشکده فنی و مهندسی دانشگاه جامع امام حسین (ع)

چکیده

نانوکامپوزیت­های زمینه پلیمری تقویت شده با نانولوله­های کربنی به دلیل برخورداری از خواص مکانیکی مطلوب، مورد توجه ویژه مراکز پژوهشی و صنعتی قرار گرفته­ و مطالعات گسترده­ای در رابطه با توسعه این مواد و بهبود خواص آن­ها صورت گرفته است. بسیاری از این تحقیقات به بررسی تأثیر پارامترهای مختلف بر روی خواص این نانوکامپوزیت­ها پرداخته­اند. در این میان، استفاده از روش­های تجربی با محدودیت­­هایی نظیر مشکلات ساخت و هزینه­های فراوان مواجه بوده و به همین دلیل شاهد گسترش روز افزون استفاده از روش­های شبیه­سازی مقیاس مولکولی در مطالعه خواص و رفتار این مواد هستیم. در این تحقیق، از روش دینامیک مولکولی و میدان نیروی پی­‍‍‍­سی­اف­اف برای محاسبه خواص مکانیکی نانوکامپوزیت‌های زمینه پلیمری تقویت شده با نانولوله‍های کربنی‌ تک­جداره استفاده شده است. برای این منظور، پلیمر اپوکسی به دلیل کاربرد گسترده در زمینه­های مختلف و بهره­مندی از خواص مکانیکی مناسب به عنوان زمینه‌ در نظر گرفته شد. از آنجایی که اپوکسی از پلیمرهای دو جزئی و گرماسخت محسوب می‌شود، یک روش پلیمریزاسیون چهار مرحله­ای به کمک دینامیک مولکولی برای ایجاد اتصالات عرضی بین مونومرها به­کار گرفته شد. در مرحله بعدی، پلیمر اپوکسی و نانولوله‌های کربنی برای مدل­سازی نانوکامپوزیت­های پلیمری با کسرهای وزنی 1 تا 5 درصد مورد استفاده قرار گرفته و در نهایت ضرایب الاستیک نانوکامپوزت­ شامل مدول یانگ و مدول برشی به روش کرنش- ثابت محاسبه شد. نتایج شبیه‌سازی‌های دینامیک مولکولی حاکی از بهبود خواص مکانیکی پلیمر اپوکسی در اثر اضافه نمودن نانولوله‌های کربنی می‌باشد.

کلیدواژه‌ها


  1. Zeng, Q., Yu, A. and Lu, G. “Multiscale modeling and simulation of polymer nanocomposites”, Prog. Polym. Sci. Vol. 33, pp. 191-269, 2008.
  2. Han, Y. and Elliott, J. “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites”, Comp. Mater. Sci., Vol. 39, pp. 315-323, 2007.
  3. Frankland, S. J. V., Caglar, A., Brenner, D.W. and Griebel, M. “Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymerinterfaces”, J. Phys. Chem. B, Vol. 106, pp. 3046–3048, 2002.
  4. Frankland, S. J. V. and Harik, V. M. “Analysis of carbon nanotube pull-out from a polymer matrix”, Surf. Sci. Lett., Vol. 525, Vol. 103-108, 2003.
  5. Gou, J., Liang, Z., Zhang, Ch. and Wang, B. “Computational analysis of effect of single walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites”, Composites: Part B, Vol. 36, pp. 524-533, 2005.
  6. Shen, G. A., Namilae, S. and Chandra, N. “Load transfer issues in the tensile and compressive behavior of multiwall carbon nanotubes”, Mater. Sci. Eng. A, Vol. 429, pp.66-73, 2006.
  7. Namilae, S. and Chandra, N. “Role of atomic scale interfaces in the compressive behavior carbon nanotubes in composites”, Compos. Sci. Tech., Vol. 66,pp. 2030- 2038, 2006.
  8. Namilae, S., Radhakrishnan, B. and Sarma, G. B. “Atomistic simulations of interfacial sliding in amorphous carbon nanocomposites”, Compos. Sci. Tech., Vol. 67, pp. 1302-1310, 2007.
  9. Zhu, R., Pan, E. and Roy, A. K. “Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites”, Mater. Sci. Eng. A, Vol. 447, pp. 51-57, 2007.
  10. Chowdhury, S. C. and Okabe, T. “Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method”, Composites: Part A, Vol. 38, pp. 747-754, 2007.
  11. Lordi, V. and Yao, N. “Molecular mechanics of binding in carbon-nanotube-polymer composites”, J. Mater. Res., Vol.15, pp. 2770-2779, 2000.
  12. Wong, M., Paramsothy, M., Xu, X. J., Ren, Y., Li, S. and Liao, K. “Physical interactions at carbon nanotube-polymer composites”, Polymer, Vol. 44, pp. 7757-7764, 2003.
  13. Li, C. and Chou, T. W. “Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces”, Compos. Sci. Tech., Vol. 63, pp.1517-1524, 2003.
  14. Li, C. and Chou, T. W. “Multiscale modeling of compressive behavior of carbon nanotube/polymer composites”, Compos. Sci. Tech., Vol. 66, pp. 2409-2414, 2006.
  15. Mokashi, V. V., Qian, D. and Liu, Y. “A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics”, Compos. Sci. Tech., Vol. 67, pp. 530-540, 2007.
  16. http://accelrys.com/products/materials-studio/ Accelrys Inc., San Diego.
  17. Plimpton, S. “Fast parallel algorithms for short-range molecular dynamics”, J. Computational Physics, Vol.117, pp.1-19, 1995.
  18. Ionita, M. “Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour”, Composites Part B: Eng., Vol. 43, pp. 3491-3496, 2012.
  19. Sun, H., Mumby, S. J., Maple, J. R. and Hagler, A. T. “An ab initio CFF93 all-atom force field for polycarbonates”, J. American Chemical Society, Vol. 116, pp. 2978-2987, 1994.
  20. Shokuhfar, A. and Arab, B. “The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation”, J. molecular modeling, Vol. 19, pp. 3719-3731, 2013.
  21. Arab, B. and Shokuhfar, A. “Molecular dynamics simulation of cross-linked urea-formaldehyde polymers for self-healing nanocomposites: prediction of mechanical properties and glass transition temperature”, J. molecular modeling, Vol. 19, pp. 5053-5062, 2013.
  22. Shokuhfar, A. and Arab, B. “Study of the structure and glass transition behavior of epoxy polymers using molecular dynamics”, Modares Mechanical Engineering, Vol. 14, pp. 107-112, 2014.
  23. Masoumi, S., Arab, B. and Valipour, H. “A study of thermo-mechanical properties of the cross-linked epoxy: An atomistic simulation”, Polymer, Vol. 70, pp. 351-360, 2015.
  24. Jeyranpour, F., Alahyarizadeh, G. and Arab, B. “Comparative Investigation of Thermal and Mechanical Properties of Cross-Linked Epoxy Polymers with different curing agents by Molecular Dynamics Simulation”, J. Mol. Graphics Modell. 2015.
  25. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A. and Haak, J. “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., Vol. 81, pp. 3684, 1984.
  26. Theodorou, D. N. and Suter, U. W. “Atomistic modeling of mechanical properties of polymeric glasses”, Macromol., Vol. 19, pp. 139-154, 1986.
  27. Brown, D. and Clarke, J. H. R. “Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology”, Macromol., Vol. 24,pp. 2075-2082, 1991.
  28. Gusev, A. A., Zehnder, M. M. and Suter, U. W. “Fluctuation formula for elastic constants”, Physical Review B, Vol. 54, pp. 1-4, 1996.
  29. Parrinello, M. and Rahman, A. “Strain fluctuations and elastic constants”, J. Chem. Phys., Vol. 76, p. 2662, 1982.
  30. Ray, J. R. “Elastic constants and statistical ensembles in molecular dynamics”, Computer Physics Reports, Vol. 8, pp. 109-151, 1988.
  31. Sadd, M. H. “Elasticity: theory, applications, and numerics”, Academic Press: Burlington, 2009.
  32. Zhu, R., Pan, E. and Roy, A. “Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites”, Mater. Sci. Eng., A, Vol. 447, pp. 51-57, 2007.
  33. Alian, A., Kundalwal, S. and Meguid, S. “Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes”, Compos. Struct., Vol. 131, pp. 545-555, 2015.