پاسخ غیرخطی ضربه کم سرعت ورق کامپوزیتی فیبرکربنی بهبودیافته با نانولوله کربنی در محیط حرارتی رطوبتی

نویسندگان

فنی و مهندسی دانشگاه بین المللی امام خمینی(ره)

چکیده

در این مقاله، پاسخ غیر­خطی ضربه کم سرعت ورق کامپوزیتی چندلایه تقویت شده با فیبر کربن و نانولوله­های کربنی در محیط  حرارتی رطوبتی مورد مطالعه قرار گرفته است. خواص موثر نانوکامپوزیت سه فازی با ترکیبی از معادلات هالپین تسای و مدل میکرودینامیکی به صورت سلسله مراتبی به دست می آیند. فرض شده است نانولوله­های کربنی به صورت تصادفی و یکنواخت در ماتریس پخش شده­اند. تاریخچه نیرو تماس بین ضربه زننده و ورق از مدل غیر خطی هرتز پیش­بینی شده است. معادلات حاکم براساس اصل کار مجازی استخراج شده و به کمک روش المان محدود و انتگرال­گیری زمانی نیومارک حل می­گردند. نتایج عددی نشان می­دهد با افزودن مقدار کمی نانولوله کربنی (1 تا 2 درصد) به    کامپوزیت­­های تقویت شده با فیبر کربن، بیشینه نیروی تماس افزایش پیدا کرده و مقدار نفوذ و مدت زمان تماس کاهش می­یابد. همچنین مشاهده شد نانولوله­ها میزان خیز ورق را در برابر ضربه را به طور قابل ملاحظه­ای کاهش می­دهند.

کلیدواژه‌ها


  1. Sgobba, V. and Guldi, D. M. “Carbon nanotubes-electronic/electrochemical properties and application for nanoelectronics and photonics”, Chemical society reviews, Vol. 38, No. 1, pp. 165-184, 2009.
  2. Shen, H.-S. “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments”, Composite Structures, Vol. 91, No. 1, pp. 9-19, 2009.
  3. Yas, M. and Heshmati, M. “Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load”, Applied Mathematical Modelling, Vol. 36, No. 4, pp. 1371-1394, 2012.
  4. Heshmati, M. and Yas, M. “Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads”, Materials & Design, Vol. 49, pp. 894-904, 2013.
  5. Moradi-Dastjerdi, R., Foroutan, M., and Pourasghar, A. “Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method”, Materials & Design, Vol. 44, pp. 256-266, 2013.
  6. Shen, H.-S. and Xiang, Y. “Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments”, Engineering Structures, Vol. 56, pp. 698-708, 2013.
  7. Rafiee, R. and Moghadam, R. M. “Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling”, Computational Materials Science, Vol. 63, pp. 261-268, 2012.
  8. Khalili, S. and Haghbin, A. “Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads”, Composite Structures, Vol. 98, pp. 253-260, 2013.
  9. Wang, Z.-X. and Shen, H.-S. “Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments”, Nonlinear Dynamics, Vol. 70, No. 1, pp. 735-754, 2012.
  10. Lei, Z., Zhang, L., and Liew, K. “Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates”, International Journal of Mechanical Sciences, Vol. 99, pp. 208-217, 2015.
  11. Kim, M., Park, Y.-B., Okoli, O. I., and Zhang, C. “Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites”, Composites Science and Technology, Vol. 69, No. 3, pp. 335-342, 2009.
  12. Bekyarova, E., Thostenson, E., Yu, A., Kim, H., Gao, J., Tang, J., et al. “Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites”, Langmuir, Vol. 23, No. 7, pp. 3970-3974, 2007.
  13. Rafiee, M., Liu, X., He, X., and Kitipornchai, S. “Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates”, Journal of Sound and Vibration, Vol. 333, No. 14, pp. 3236-3251, 2014.
  14. Rafiee, M., He, X., Mareishi, S., and Liew, K. “Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates”, International Journal of Applied Mechanics, Vol. 6, No. 03, pp. 1450025, 2014.
  15. He, X., Rafiee, M., Mareishi, S., and Liew, K. “Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams”, Composite Structures, Vol. 131, pp. 1111-1123, 2015.
  16. Bhardwaj, G., Upadhyay, A., Pandey, R., and Shukla, K. “Non-linear flexural and dynamic response of CNT reinforced laminated composite plates”, Composites Part B: Engineering, Vol. 45, No. 1, pp. 89-100, 2013.
  17. Mohammadimehr, M., Salemi, M., and Navi, B. R. “Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM”, Composite Structures, Vol. 138, pp. 361-380, 2016.
  18. Jarali, C. S., Patil, S. F., and Pilli, S. C. “Hygro-Thermo-Electric Properties of Carbon Nanotube Epoxy Nanocomposites with Agglomeration Effects”, Mechanics of Advanced Materials and Structures, Vol. 22, No. 6, pp. 428-439, 2015.
  19. Taraghi, I., Fereidoon, A., and Taheri-Behrooz, F. “Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures”, Materials & Design, Vol. 53, pp. 152-158, 2014.
  20. Soliman, E. M., Sheyka, M. P., and Taha, M. R. “Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes”, International Journal of Impact Engineering, Vol. 47, pp. 39-47, 2012.
  21. Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., and Paipetis, A. “Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes”, Composites Science and Technology, Vol. 70, No. 4, pp. 553-563, 2010.
  22. Jam, J. and Kiani, Y. “Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment”, Composite Structures, Vol. 132, pp. 35-43, 2015.
  23. Wang, Z.-X., Xu, J., and Qiao, P. “Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates”, Composite Structures, Vol. 108, pp. 423-434, 2014.
  24. Malekzadeh, P. and Dehbozorgi, M. “Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates”, Composite Structures, 2016.
  25. Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., et al. “Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites”, Nanoscale research letters, Vol. 8, No. 1, pp. 1-8, 2013.
  26. Shen, H.-S. “A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators”, Composite Structures, Vol. 91, No. 3, pp. 375-384, 2009.
  27. Chetan, S. J. “Micromechanics and Modelling of Adaptive Shape Memory Composites”, 2012.
  28. Hull, D. and Clyne, T. An introduction to composite materials: Cambridge university press, 1996.
  29. Zhang, Y. and Wang, X. “Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubes-reinforced composites system”, Journal of reinforced plastics and composites, Vol. 25, No. 1, pp. 71-88, 2006.
  30. Jarali, C., Patil, S., and Pilli, S. “Hygro-Thermo-Electric Properties of CNT Epoxy Nanocomposites With Agglomeration Effects”, Mech. Adv. Mater. Struct, 2013.
  31. Sun, C. and Chen, J. “On the impact of initially stressed composite laminates”, Journal of Composite Materials, Vol. 19, No. 6, pp. 490-504, 1985.
  32. Yang, S. and Sun, C. "Indentation law for composite laminates", in Composite Materials: Testing and Design (6th Conference), 1982.
  33. Reddy, J. N. Mechanics of laminated composite plates and shells: theory and analysis: CRC press, 2004.
  34. Zhang, B., He, Y., Liu, D., Gan, Z., and Shen, L. “A non-classical Mindlin plate finite element based on a modified couple stress theory”, European Journal of Mechanics-A/Solids, Vol. 42, pp. 63-80, 2013.
  35. Zhu, J., Taylor, Z., and Zienkiewicz, O. "The finite element method: its basis and fundamentals," ed: Butterworth-Heinemann Burlington, VT, 2005.
  36. Shariyat, M. and Farzan, F. “Nonlinear eccentric low-velocity impact analysis of a highly prestressed FGM rectangular plate, using a refined contact law”, Archive of Applied Mechanics, vol. 83, no. 4, pp. 623-641, 2013.
  37. Vaziri, R., Quan, X., and Olson, M. “Impact analysis of laminated composite plates and shells by super finite elements”, International journal of impact engineering, Vol. 18, No. 7, pp. 765-782, 1996.
  38. Delfosse, D., Vaziri, R., Pierson, M., and Poursartip, A. “Analysis of the non-penetrating impact behaviour of CFRP laminates”, ICCM/9. Composites Behaviour., Vol. 5, pp. 366-373, 1993.