تحلیل عددی خنک کاری لایه ای پره توربین در حال چرخش با استفاده از مجرای گسترش‌ یافته جانبی

نویسندگان

دانشکده مهندسی مکانیک دانشگاه سمنان

چکیده

در این مقاله، بهینه­سازی اثربخشی خنک­کاری لایه­ای در یک پره توربین در حال چرخش، با استفاده از مجرای گسترش یافته­ جانبی انجام شده است. شبیه­سازی عددی سه­بعدی خنک­کاری پره توربین با استفاده از مدل آشفتگی k-ε RNG در سه سرعت چرخش صفر، 300 و 500 دور بر دقیقه انجام شده است. نتایج به­دست­آمده، نشان می­دهد که افزایش سرعت دورانی پره به واسطه ایجاد شتاب کریولیس، منجر به انحراف جریان هوای خنک­کننده از روی خط مرکزی می­شود. انحراف جریان هوای خنک­کننده باعث کاهش میزان اثربخشی خنک­کاری در خط مرکزی پره به ویژه در پایین دست سوراخ تزریق می­شود. مقایسه نتایج سوراخ تزریق استوانه­ای (بیضوی) و مجرای گسترش­یافته جانبی، نشان می­دهد که اختلاط هوای خنک­کاری با جریان گرم در مجرای گسترش­یافته جانبی، کمتر از سوراخ استوانه­ای خواهد بود. استفاده از مجرای گسترش­یافته جانبی در سرعت­های چرخش صفر، 300 و 500 دور بر دقیقه منجر به افزایش اثربخشی خنک­کاری توربین به ترتیب به میزان 39، 38 و 35 درصد خواهد شد.

کلیدواژه‌ها


  1. Boyce, F. and Mehrerwan, P. “Gas Turbine Engineering Handbook”, 3rd Edition, Elsevier Inc., 2001.##
  2. Bogard, D. G., and Thole, K. A. “Gas Turbine Film Cooling”, J. Propul. Power, Vol. 22, No. 2, pp. 249–270, 2006.##
  3. Bazdidi-Tehrani, F., Bohlooli, N., and Jadidi, M. “Influence of Film Cooling Jet Inlet Boundary Condition on Large Eddy Simulation of Model Turbine Blade Leading Edge”, Prog. Compt. Fluid Dy. Vol. 15, No. 4, pp. 214-227, 2015.##
  4. Bazdidi-Tehrani, F., and Andrews, G. E. “Full Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio”, J. Eng. Gas Turbines Power, Vol. 116, No. 3, pp. 587-596, 1994.##
  5. Zolfagharian, M., Rajabi-Zargarabadi, M., Mujumdar, A. S., Valipour M. S., and Asadollahi, M. “Optimization of Turbine Blade Cooling Using Combined Cooling Techniques”, Eng. Appl. Comp. Fluid Mech., Vol. 8, No. 3, pp. 462–475, 2014.##
  6. Amer, A. A., Jubran, B. A., and Hamdan, M. A. “Comparison of Different Two Equation Turbulence Models for Prediction of Film Cooling from Two Rows of Holes”, Numer. Heat Transfer, Part A, Vol. 21, No. 2, pp. 143-162, 1992.##
  7. Rajabi-Zargarabadi, M., and Bazdidi-Tehrani, F. “Implicit Algebraic Model for Predicting Turbulent Heat Flux in Film Cooling Flow”, Int. J. Numer. Methods Fluids. Vol. 64, No. 5, pp. 517–531, 2010.##
  8. Taiebi-Rahni, M. and Kymasy, M. “Numerical Simulation of Turbulent Flow Film Cooling Using k-ε and Shear Stress Transfer Turbulence Models”, Sharif Mech. Eng. J. Vol. 22, No. 18, pp. 59-65, 2002.##
  9. Taeibi-Rahni, M., Ramezanizadeh, M., Ganji, D. D., Darvan, A., Ghasemi, E., Soleimani, S., and Bararnia, H. “Comparative Study of Large Eddy Simulation of Film Cooling Using a Dynamic Global-Coefficient Subgrid Scale Eddy-viscosity Model With RANS and Smagorinsky Modeling”, Int. Commun. Heat Mass Transfer. Vol. 38, No. 5, pp. 659-667, 2011.##
  10. Guoqiang, X., Jianqin Z., and Tao, Z. “Application of the TLVA Model for Predicting Film Cooling Under Rotating Frames”, Int. Heat Mass Transfer. Vol. 53, No. 1, pp. 3013–3022, 2010.##
  11. Ki-Don, L. and Kwang-Yong, K. “Surrogate Based Optimization of a Laidback Fan-shaped Hole for Film-cooling”, Int. J. Heat Fluid Flow. Vol. 32, No. 1, pp. 226-238, 2011.##
  12. Yao, Y., Jing-zhou Z., and Xiao-ming, T. “Numerical Study of Film Cooling from Converging Slot-hole on a Gas Turbine Blade Suction Side” Int. Comm. Heat and Mass Trans. Vol. 52, No. 1, pp. 61–72, 2014.##
  13. Ghorab, M. G. “Cooling Performance and Flow-field Analysis of a Hybrid Scheme with Different Outlet Configurations”, Appl. Therm. Eng. Vol. 61, No. 2, pp. 799-816, 2013.##
  14. Ghorab, M. G. “Film Cooling Effectiveness and Heat Transfer Analysis of a Hybrid scheme with Different Outlet Configurations”, App. Therm. Eng., Vol. 63, No. 2, pp. 200-217, 2014.##
  15. Montomoli, F., D’Ammaro, A., and Uchida, S. “Numerical and Experimental Investigation of a New Film Cooling Geometry with High P/D Ratio”, Int. J. Heat Mass Transfer. Vol. 66, No. 1, pp. 366–375, 2013.##
  16. Cun-liang, L., Hui-ren, Z., Zong-wei, Z. and Du-chun, X. “Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laidback Holes With Different Hole Pitches Int. J. Heat Mass Transfer. Vol. 55, No. 23, pp. 6832–6845, 2012.##
  17. Cun-liang, L., Jin-long, L., Hui-ren, Z., A-sai, W., Yi-hong, H. and Zhi-xiang, Z. “Film Cooling Sensitivity of Laidback Fan-shape Holes to Variations in Exit Configuration and Mainstream Turbulence Intensity”, Int. J. Heat Mass Transfer. Vol. 89, No. 1, pp. 1141–1154, 2015.##
  18. Xing Y., Zhao, L., Zhansheng, L. and Zhenping, F. “Numerical Analysis on Effects of Coolant Swirling Motion on Film Cooling Performance”, Int. J. Heat Mass Transfer. Vol. 90, No. 1, pp. 1082–1089, 2015.##
  19. Kalghatgi, P., and Acharya, S. “Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater”, J. Turbomach. Vol. 137, No. 10, pp. 1-10, 2015.##
  20. Ramesh, S., Ramirez, D. G., Ekkad, S.V. and Alvin, M. “Analysis of Film Cooling Performance of Advanced Tripod Hole Geometries with and Without Manufacturing Features”, Int. J. Heat Mass Transfer. Vol. 94, No. 1, pp. 9–19, 2016.##
  21. Hong, W., Huichuan, C., Yulong, L., Chengjun, R., and Ding, S. “Effects of Side Hole Position and Blowing Ratio on Sister Hole Film Cooling Performance in a Flat Plate”, App. Therm. Eng. Vol. 93, No. 1, pp.718–730, 2016.##
  22. Xiaojun, F., Changhe, D., Liang, L., and Sen, L. “Numerical Simulation on Effects of Film Hole Geometry and Mass Flow on Vortex Cooling Behavior for Gas Turbine Blade Leading Edge”, App. Therm. Eng., Vol. 112, No. 1, pp. 472-483, 2017.##
  23. Murata, A., Yano, K., Hanai, M., Saito, H. and Iwamoto, K. “Arrangement Effects of Inclined Teardrop-Shaped Dimples on Film Cooling Performance of Dimpled Cutback Surface at Airfoil Trailing Edge”, Int. J. Heat Mass Trans., Vol. 107, No. 1, pp.761-770, 2017.##
  24. Zhi, T., Xiaojun, Y., Shuiting, D., Guoqiang, X., Hongwei, W., Hongwu, D. and Xiang, L. “Experimental Study of Rotation Effect on Film Cooling Over the Flat Wall with a Single Hole”, Exp. Therm. Fluid Sci., Vol. 32, No. 5, pp. 1081–1089, 2008.##
  25. Zhi, T., Zhenming, Z., Shuiting, D., Guoqiang, X. and Hongwei, W. “Suitability of Three different Two-Equation Turbulence Models in Predicting Effusion Cooling Performance over a Rotating Blade”, Int. J. Heat Mass Transfer. Vol. 52, No. 1, pp. 1268-1275, 2009.##
  26. Walters, D.K. and Laylek, J.H. “A Detailed Analysis of Film Cooling Physics: Part III- Streamwise Injection with Cylindrical Holes”, J. Turbomach. Vol. 122, No. 1, pp. 122-132, 1996.
  27. Ansys Fluent User’s Manual Version 16, 2014.##
  28. Baheri-Islami, S., and Jubran, B. A. “The Effect of Turbulence Intensity on Film Cooling of Gas Turbine Blade from Trenched Shaped Holes”, Int. J. Heat Mass Transfer. Vol. 48, No. 5, pp. 831-840, 2012.##
  29. Ekkad, S. V., Han, J. C., and Du, H. “Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density”, J. Turbomach. Vol. 120, No. 4, pp. 799–807, 1998.##
  30. Launder, B. E. and Sandham, N. D. “Closure Strategies for Modelling Turbulent and Transitional Flows”, Cambridge University Press, Cambridge, 2002.