مطالعه اثر سرعت اسکن و توان لیزر بر حوضچه مذاب در فرآیند ذوب انتخابی لیزر به کمک معادلات حرکت مذاب برای Ti6Al4V

نوع مقاله : گرایش ساخت و تولید

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین ع، تهران، ایران

3 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده

روش ذوب انتخابی لیزر، یکی از روش‌های ساخت افزایشی است که در آن قطعات با ساختارهای هندسی متنوع به‌صورت لایه به لایه، توسط ذوب پودر فلز ایجاد می­شود. گرادیان دما در محل ذوب، به پارامترهای فرآیند مانند سرعت اسکن و توان لیزر وابسته است که بر روی ابعاد حوضچه مذاب و کیفیت سطح تأثیر دارد. با توجه به ماهیت گذرا و ابعاد بسیار کوچک حوضچه مذاب، کنترل و اندازه‌گیری گرادیان دمای ایجاد شده و ابعاد حوضچه مذاب نسبتاً دشوار است. در این مقاله از یک مدل اجزای محدود جهت تحلیل فرآیند و مطالعه اثر سرعت اسکن و توان لیزر، بر روی بستری از آلیاژ Ti6Al4V  استفاده شده است. در این مطالعه ابتدا معادلات نظریه لیزر بررسی شد و پس از مدل‌سازی، صحت لیزر مدل شده با نمونه تجربی مورد مقایسه قرار گرفت. پس از صحت‌سنجی مدل‌سازی لیزر، فرآیند ذوب انتخابی لیزر بررسی و تحلیل اجزای محدود برای توان­ و سرعت­های مختلف انجام شد. برای مدل‌سازی از فیزیک‌های مختلفی در نرم‌افزار، به‌طور هم‌زمان شامل انتقال حرارت همراه با معادلات تغییر فاز جامد به مایع، تنش سطحی (اثر مارانگونی) و جریان آرام سیال (معادلات ناویراستوکس) همراه با اثر گرانش استفاده شد. ابعاد حوضچه مذاب، گرادیان دما در راستاهای مسیر حرکت لیزر، پهنا و عمق لایه مذاب و همچنین بررسی پیدایش عیب اثر توپی شدن، مورد مطالعه قرار گرفته است. نتایج مدل عددی جهت صحت­سنجی با مدل تجربی مقایسه شد که سازگاری مناسبی را با نمونه تجربی نشان می‌دهد.

کلیدواژه‌ها


Smiley face

  1. DebRoy T., Wei H., Zuback J., Mukherjee T., Elmer J., Milewski J., Beese A. M., Wilson-Heid A., De A., and Zhang W., “Additive manufacturing of metallic components–process, structure and properties”, Prog. Mater. Sci., Vol. 92, pp. 112-224, 2018.##
  2. Schwab H., Prashanth K. G., Löber L., Kühn U., and Eckert J., “Selective laser melting of Ti-45Nb alloy”, Metals, Vol. 5, No. 2, pp. 686-694, 2015.##
  3. Scudino S., Unterdörfer C., Prashanth K., Attar H., Ellendt N., Uhlenwinkel V., and Eckert J., “Additive manufacturing of Cu–10Sn bronze”, Mater. Lett., Vol. 156, pp. 202-204, 2015.##
  4. Reijonen J., Revuelta A., Riipinen T., Ruusuvuori K., and Puukko P., “On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing”, Addit. Manuf., p. 101030, 2020.##
  5. Wang F., “Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology”, Int. J. Adv. Manuf. Technol., Vol. 58, No. 5-8, pp. 545-551, 2012.##
  6. Foroozmehr A., Badrossamay M., Foroozmehr E., and Golabi S. i., “Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed”, Mater. Des., Vol. 89, pp. 255-263, 2016.##
  7. Tian Y., Chen C., Li S., and Huo Q., “Research progress on laser surface modification of titanium alloys”, Appl. Surf. Sci., Vol. 242, No. 1-2, pp. 177-184, 2005.##
  8. Dilip J., Zhang S., Teng C., Zeng K., Robinson C., Pal D., and Stucker B., “Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting,” Prog. Addit. Manuf., Vol. 2, No. 3, pp. 157-167, 2017.##
  9. Li Z., Li B.-Q., Bai P., Liu B., and Wang Y., “Research on the thermal behaviour of a selectively laser melted aluminium alloy: simulation and experiment”, Materials, Vol. 11, No. 7, p. 1172, 2018.##
  10. Masoomi M., Thompson S. M., and Shamsaei N., “Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications”, Int. J. Mach. Tools Manuf., Vol. 118, pp. 73-90, 2017.##
  11. Song B., Dong S., Liao H., and Coddet C., “Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering”, Int. J. Adv. Manuf. Technol., Vol. 61, No. 9-12, pp. 967-974, 2012.##
  12. Boyer R. R., “An overview on the use of titanium in the aerospace industry”, Mater. Sci. Eng. A, Vol. 213, No. 1-2, pp. 103-114, 1996.##
  13. Inagaki I., Takechi T., Shirai Y., and Ariyasu N., “Application and features of titanium for the aerospace industry”, Nippon Steel Tech. Rep., Vol. 106, No. 106, pp. 22-27, 2014.##
  14. Singh P., Pungotra H., and Kalsi N. S., “On the characteristics of titanium alloys for the aircraft applications”, Mater. Today: Proc., Vol. 4, No. 8, pp. 8971-8982, 2017.##
  15. Uhlmann E., Kersting R., Klein T. B., Cruz M. F., and Borille A. V., “Additive manufacturing of titanium alloy for aircraft components”, Procedia Cirp, Vol. 35, pp. 55-60, 2015.##
  16. Waterman N. A. and Dickens P., “Rapid product development in the USA, Europe and Japan”, World Class Design to Manufacture, 1994.##
  17. Huang R., Riddle M., Graziano D., Warren J., Das S., Nimbalkar S., Cresko J., and Masanet E., “Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components”, J. Clean. Prod., Vol. 135, pp. 1559-1570, 2016.##
  18. Lütjering G. and Williams J. C., Titanium. Springer Science & Business Media, 2007.##
  19. ASTM F136 - 12a Standard specification for wrought titanium-6aluminum-4vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNSR56401).##
  20. ASTM F2924 - 12a Standard specification for additive manufacturing titanium-6aluminum-4vanadium with powder bed fusion.##
  21. Kong C.-J., Tuck C. J., Ashcroft I. A., Wildman R. D., and Hague R., “High density Ti6Al4V via SLM processing: microstructure and mechanical properties”, in Solid Freeform Fabr Symp Proc, Vol. 36, pp. 475-483, 2011.##
  22. Karlsson J., Snis A., Engqvist H., and Lausmaa J., “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder fractions”, J. Mater. Process. Technol., Vol. 213, No. 12, pp. 2109-2118, 2013.##
  23. Craeghs T., Bechmann F., Berumen S., and Kruth J.-P., “Feedback control of Layerwise Laser Melting using optical sensors”, Phys. Procedia, Vol. 5, pp. 505-514, 2010.##
  24. Parry L., Ashcroft I., and Wildman R. D., “Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation”, Addit. Manuf., Vol. 12, pp. 1-15, 2016.##
  25. Li Y. and Gu D., “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder”, Mater. Des., Vol. 63, pp. 856-867, 2014.##
  26. Kang J., Yi J., and Wang T., “Effect of laser power and scanning speed on the microstructure and mechanical properties of SLM fabricated Inconel 718 specimens”, Mater. Sci. Eng., Vol. 3, pp. 72-76, 2019.##
  27. Matsumoto M., Shiomi M., Osakada K., and Abe F., “Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing”, Int. J. J. Mach. Tools Manuf., Vol. 42, No. 1, pp. 61-67, 2002.##
  28. Yin J., Zhu H., Ke L., Lei W., Dai C., and Zuo D., “Simulation of temperature distribution in single metallic powder layer for laser micro-sintering”, Comput. Mater. Sci., Vol. 53, No. 1, pp. 333-339, 2012.##
  29. Yang J. H. N., Brandt M., and Sun S. J., “Numerical and experimental investigation of the heat-affected zone in a laser-assisted machining of Ti-6Al-4V alloy process”, in Mater. Sci. Forum, Vol. 618, pp. 143-146: Trans Tech Publ, 2009.##
  30. Hussein A., Hao L., Yan C., and Everson R., “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting”, Mater. Des. (1980-2015), Vol. 52, pp. 638-647, 2013.##
  31. Ali H., Ghadbeigi H., and Mumtaz K., “Processing parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V”, J. Mater. Eng. Perform., Vol. 27, No. 8, pp. 4059-4068, 2018.##
  32. Lee Y. and Zhang W., “Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion”, Addit. Manuf., Vol. 12, pp. 178-188, 2016.##
  33. Nisar A., Schmidt M., Sheikh M., and Li L., “Three-dimensional transient finite element analysis of the laser enamelling process and moving heat source and phase change considerations”, Proc Inst Mech Eng B J Eng Manuf ., Vol. 217, No. 6, pp. 753-764, 2003.##
  34. Zhirnov I., Yadroitsava I., and Yadroitsev I., “Optical monitoring and numerical simulation of temperature distribution at selective laser melting of Ti6Al4V alloy”, in Mater. Sci. Forum, Vol. 828, pp. 474-481: Trans Tech Publ, 2015.##
  35. Tsai T.-W., Choong W.-K., Huang W.-C., Chuang C.-S., De-Yau L., Liu S.-H., Horng J.-B., and Chen J.-K., “Selective Laser Melting of Metal Powders in Additive Manufacturing”, J. Fluid Flow, Heat Mass Transfer (JFFHMT), Vol. 5, No. 4, pp. 90-99.##
  36. Dai D. and Gu D., “Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments”, Mater. Des., Vol. 55, pp. 482-491, 2014.##
  37. Wegner A. and Witt, G., “Process monitoring in laser sintering using thermal imaging”, in SFF Symposium, Austin, Texas, USA, pp. 8-10, 2011.##
  38. Craeghs T., Clijsters S., Yasa E., Bechmann F., Berumen S., and Kruth J.-P., “Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring”, Opt Lasers Eng, Vol. 49, No. 12, pp. 1440-1446, 2011.##
  39. Fischer P., Locher M., Romano V., Weber H.-P., Kolossov S., and Glardon R., “Temperature measurements during selective laser sintering of titanium powder”, Int. J. Mach. Tools Manuf., Vol. 44, No. 12-13, pp. 1293-1296, 2004.##
  40. Li Y. and Gu D., “Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study”, Addit. Manuf., Vol. 1, pp. 99-109, 2014.##
  41. Holman J. P., “Heat Transfer (McGraw-Hill Series in Mechanical Engineering)ˮ. The McGraw-Hill Companies, Inc, 2010.##
  42. Germain G., Morel F., Lebrun J.-L., and Morel A. “Machinability and Surface Integrity for a Bearing Steel and a Titanium Alloy in Laser Assisted Machiningˮ, Lasers Eng. (Old City Publishing), Vol. 17, 2007.##
  43. Zhuang J.-R., Lee Y.-T., Hsieh W.-H., and Yang A.-S., “Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powderˮ, Opt Laser Technol, Vol. 103, pp. 59-76, 2018.##
  44. Spears T. G. and Gold S. A., “In-process sensing in selective laser melting (SLM) additive manufacturingˮ, Integr. Mater. Manuf. Innov., Vol. 5, No. 1, pp. 16-40, 2016.##
  45. Promoppatum P., Onler R., and Yao S.-C., “Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V productsˮ, J. Mater. Process. Technol., Vol. 240, pp. 262-273, 2017.##
  46. Kundakcıoğlu E., Lazoglu I., Poyraz Ö., Yasa E., and Cizicioğlu N., “Thermal and molten pool model in selective laser melting process of Inconel 625ˮ, Int. J. Adv. Manuf. Tech., Vol. 95, No. 9-12, pp. 3977-3984, 2018.##
  47. Boivineau M., Cagran C., Doytier D., Eyraud V., Nadal M.-H., Wilthan B., and Pottlacher G., “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloyˮ, Int. J. Thermophys., Vol. 27, No. 2, pp. 507-529, 2006.##
  48. Fischer P., Romano V., Weber H.-P., Karapatis N., Boillat E., and Glardon R., “Sintering of commercially pure titanium powder with a Nd: YAG laser sourceˮ, Acta Mater., Vol. 51, No. 6, pp. 1651-1662, 2003.##
  49. Yadroitsev I., Krakhmalev P., and Yadroitsava I., “Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolutionˮ, J. Alloys Compd., Vol. 583, pp. 404-409, 2014.##
  50. Kou S., “Welding metallurgyˮ, New Jersey, USA, pp. 431-446, 2003.##
  51. Fu C. and Guo Y., “3-dimensional finite element modeling of selective laser melting Ti-6Al-4V alloyˮ, in 25th Annual International Solid Freeform Fabr Symp Proc, pp. 1129-1144, 2014.##
  52. Soylemez E., “Modeling the Melt Pool of the Laser Sintered Ti6al4v Layers with Goldak’S Double-Ellipsoidal Heat Sourceˮ, in Proceedings of the 29th Annual International Solid Freeform Fabr Symp Proc, Austin, TX, USA, pp. 13-15, 2018.##