طراحی و پیاده سازی الگوریتم تخمین متمرکز مدل پیش‌بین با افق فازی برای هم‌ترازی در حرکت سامانه ناوبری اینرسی ترکیبی ارزان قیمت INS/GPS

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 دانشکده مهندسی برق، دانشگاه خواجه‌نصیرالدین طوسی، تهران، ایران

2 دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

3 استادیار دانشکده هوافضا، دانشگاه امام حسین، تهران، ایران

چکیده

تعیین جهات بردارهای سیستم ناوبری اینرسی بر اساس جهات سیستم مرجع (هم‌ترازی) یکی از مهم‌ترین پارامترهای سیستم ناوبری می‌باشد. در این سیستم‌ها به دلیل نیاز به‌ دقت بالا و عکس‌العمل سریع، هم‌ترازی در حرکت مورد توجه قرار می‌گیرد. در فرآیند هم‌ترازی در حرکت، به دلیل وجود خطاهای تصادفی در داده‌های حسگرهای واحد اندازه‌گیری اینرسی، استفاده از الگوریتم تلفیق مناسب برای ترکیب خروجی حسگرهای اینرسی و سامانه موقعیت‌یاب جهانی ضروری است. به همین دلیل در این مقاله به ارائه یک الگوریتم تلفیق مناسب برای هم‌ترازی در حال حرکت سیستم ناوبری اینرسی ترکیبی پرداخته می‌شود. برای این منظور در رویکردی جدید یک تخمین‌زن پیش‌بین با افق فازی ارائه خواهد شد، که در آن جهت افزایش دقت و همچنین کاهش بار محاسباتی، افق تخمین متناسب با مانور خودرو و به صورت فازی تغییر می‌کند. برای صحه‌گذاری بر الگوریتم ارائه ‌شده در این مقاله از تست خودرو استفاده شده است. نتایج حاصل از تست نشان می‌دهد که با استفاده از فیلتر پیشنهادی، دقت تخمین متغیرهای حالت ناوبری اینرسی نسبت به سایر روش‌های متداول، همچون فیلتر کالمن به میزان قابل توجهی افزایش خواهد یافت. همچنین الگوریتم ارائه شده در این مقاله قوام بیش‌تری را نسبت به فیلتر کالمن در مقابل عدم قطعیت مدل‌سازی و اغتشاشات خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Implementation of a Centralized Predictive Model Estimation Algorithm with the Fuzzy Approach for In-Motion Alignment of a Low-cost Integrated INS/GPS Inertial Navigation System

نویسندگان [English]

  • Saeed Khankalantary 1
  • Sadra Rafatnia 2
  • hassan mohammadkhani 3
1 Electrical Engineering Department, K.N.T University of Technology, Tehran, Iran
2 Mechanical Engineering Department, University of Tabriz, Tabriz, Iran
3 Aerospace Engineering Department, Imam Hossein University, Tehran, Iran
چکیده [English]

The process of computing the true values of the direction cosine matrix (DCM) is one of the important parameters for exact navigation of vehicles. In other words, determination of the directions of the INS vectors in terms of the directions of the reference system (alignment) is one of the important parameters of a navigation system. In order to improve the performance of such systems, this procedure is done according to the inertial measurement unit (IMU) and global positioning system (GPS) data, when the vehicle is in motion. Duo to the stochastic noise and uncertainties in inertial measurement sensors, a data fusion algorithm is used to integrate the outputs of the IMU and GPS sensors. In this paper a novel variant horizon predictive model estimation algorithm is proposed to construct an integrated INS/GPS inertial navigation system. The horizon of the proposed algorithm is calculated based on the vehicle maneuvers. Several vehicular tests have been carried out to assess the long-term performance and accuracy of the proposed navigation algorithm. The results indicate that the proposed algorithm significantly enhances the overall navigation accuracy of low-cost integrated INS/GPS inertial navigation system, in comparison to the conventional Kalman filter algorithm.

کلیدواژه‌ها [English]

  • Inertial Navigation System (INS)
  • Global Positioning System (GPS)
  • In-Motion Alignment
  • Predictive Estimation
  • Fuzzy Approach

Smiley face

1. Rafatnia, S., Nourmohammadi, H., Keighobadi, J. and Badamchizadeh, M.A. “In-move aligned SINS/GNSS system using recurrent wavelet neural network (RWNN)-based integration scheme”. Mechatronics. Vol. 54, pp.155-165, 2018.##
2. Nourmohammadi, H. and Keighobadi, J. “Integration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and
In-Motion Alignment”. AUT Journal of Modeling and Simulation. Vol. 50, No. 1, pp.13-22, 2018.##
3. St-Pierre, M. and Gingras, D. “Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system”; In: IEEE Intelligent Vehicles Symposium, Parma, Italy, 2004 (pp. 831-835).##
4. Shin, E.H. and El-Sheimy, N., 2004, April. “An unscented Kalman filter for in-motion alignment of low-cost IMUs”. In: Position Location and Navigation Symposium. PLANS 2004 (pp. 273-279). IEEE.##
5. Ali, J. and Ushaq, M. “A consistent and robust Kalman filter design for in-motion alignment of inertial navigation system”. Measurement. Vol. 42, No. 4, pp.577-582, 2009.##
6. Nourmohammadi, H. and Keighobadi, J. “Design and experimental evaluation of indirect centralized and direct decentralized integration scheme for low-cost INS/GNSS system”. GPS Solut. Vol. 22, pp.1-18, 2018.##
7. Nourmohammadi, H. and Keighobadi, J. “Decentralized INS/GNSS system with MEMS-grade inertial sensors using QR-factorized CKF”. IEEE Sens. J. Vol. 17, No. 11, pp.3278-3287, 2017.##
8. Huang, Y., Zhang, Y. and Wang, X. “Kalman-filtering-based in-motion coarse alignment for odometer-aided SINS”. IEEE Trans. Instrum. Meas. Vol. 66, No. 12, pp.3364-3377, 2017.##
9. Sun, Y., Wang, L., Cai, Q., Yang, G., & Wen, Z. “In-Motion Attitude and Position Alignment for Odometer-Aided SINS Based on Backtracking Scheme”. IEEE Access. Vol. 7, pp. 20211-20224, 2019.##
10. Zhang, L., Wu, W., Wang, M., & Guo, Y. “DVL-Aided SINS In-Motion Alignment Filter Based on a Novel Nonlinear Attitude Error Model”. IEEE Access. Vol. 7, pp. 62457 – 62464, 2019.##
11. Liu, M., Li, G., Gao, Y., Li, S., & Guan, L. “Velocity-aided In-motion Alignment for SINS Based on Pseudo-Earth Frame”. J. Navigation. Vol. 71, No. 1, pp. 221-240, 2018.##
12. Rafatnia, S., Nourmohammadi, H., & Keighobadi, J. “Fuzzy-adaptive constrained data fusion algorithm for indirect centralized integrated SINS/GNSS navigation system”. GPS Solut. Vol. 23, No. 3, pp. 23-62, 2019.##
13. Mohammad-Hoseini, S. and Seifi. M. “Error rate reduction of a low-cost integrated navigation system using neural networks”. Journal of Management System. Vol. 15, No. 3, pp.17-32, 2020. (In Persian)##
14. J. Keighobadi, S. Rafatnia, H. Nourmohammadi, M. Arbabmir, “Design and implementation of altitude estimation algorithm in the integrated barometric-inertial altimeter using model predictive control”. Journal of Mechanical Engineering-University of Tabriz, Vol. 47, No. 2, pp. 233-238, 2017. (In Persian).##
15. Keighobadi, J., Faraji, J. and Rafatnia, S. “Chaos control of atomic force microscope system using nonlinear model predictive control”. J Mech. Vol. 33, No. 3, pp.405-415, 2017.##
16. Allan, D.A. and Rawlings, J.B. “Moving Horizon Estimation. In Handbook of Model Predictive Control” (pp. 99-124). Birkhäuser, Cham, 2019.##
17. Jazwinski, A. H. “Stochastic processes and filtering theory”. Courier Corporation, United States, 2007.##
18. Nourmohammadi, H. and Keighobadi, J. “Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system”. Mech. Syst. Sig. Process. Vol. 99, pp. 434-449, 2018.##
19. Khankalantary, S., Rafatnia, S., Mohammadkhani, H. Hajizadeh, M. “Design and Implementation a Constrained Adaptive Estimation Algorithm for Low-cost Integrated Navigation System in Urban Area”. AUT Journal of Mechanical Engineering, 2019. DOI: 10.22060/MEJ.2019.14892.5971, (In Persian).##