شبیه‌سازی عددی پروفیل تغییرشکل ورق مثلثی تحت انفجار مخلوط گازی

نوع مقاله : مکانیک ضربه

نویسندگان

1 دکتری، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

2 نویسنده مسئول: دانشیار،دانشکده مهندسی مکانیک، دانشگاه گیلان ،رشت، ایران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه ایوان‌کی، ایوان‌کی، ایران

چکیده

یک مطالعه عددی پیشرفته حاوی تعامل سیال و جامد بر اساس روش مرز غوطه­ور برای بررسی تأثیر فشار پیش­انفجار و بازه زمانی تغییرشکل پلاستیک ورق­های مثلثی نازک تحت انفجار گازی انجام می­شود. سایر اهداف شبیه­سازی عددی مانند محاسبه تغییرشکل و کانتور تنش ماده در نرخ کرنش زیاد بر اساس مدل مادی جانسون-کوک وابسته به نرخ کرنش به دست می­آیند. شبیه­سازی بر اساس مدل­سازی انفجار با سینتیک واکنش شیمیایی و بهره بردن از حلگر CESE برای گسترش انفجار انجام می‌شود. روش مرز غوطه­ور برای شبیه­سازی حرکت سطح میانی بین گاز منفجرشده و ورق تغییرشکل یافته از محاسبه پخش­شدگی فشار سیال بر سطح ورق استفاده می­کند. ابزار عددی با بهره بردن از معادلات اویلری واکنش چند جزئی و معادله لاگرانژی ورق، پخش­شدگی فشار و پارامترهای انفجار گازی را به تغییرشکل ماکروسکوپیک ورق مرتبط می­کند. روش عددی به‌عنوان یک ابزار مناسب در محاسبه پروفیل تغییرشکل ورق مثلثی مبین کاهش تغییرشکل با اندازه کوچک­تر سطح بدون پوشش ورق است.

تازه های تحقیق

  • استفاده از روش اویلری برای سیال و فرمول­بندی لاگرانژی برای جامد
  • تعامل کوپل­شده بین امواج انفجار و سطح ورق
  • افزایش تغییرشکل با مقدار پیش­فشار بیشتر و مکان نقطه اشتعال نزدیک‌تر

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of Triangular Plate Deformation Profile Under Gaseous Detonation Loading

نویسندگان [English]

  • Mojtaba Haghgoo 1
  • Hashem Babaei 2
  • Tohid Mirzababaie Mostofi 3
1 Ph.D., Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
2 Corresponding author: Associate Professor, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
3 Assistant Professor, Faculty of Mechanical Engineering, University of Eyvanekey, Eyvanekey, Iran
چکیده [English]

An elaborate numerical study with a validated LS-DYNA® immersed boundary method fluid-solid interaction code is used to characterize the influence of pre-detonation pressure and time duration on plastic deformation of thin steel triangular plates subjected to gaseous detonation. Other objectives of this numerical simulation such as estimation of deflection and stress contour of material at high strain rate are derived based on a strain-rate dependent Johnson-Cook material model. Simulation relies on the modeling of detonation by chemical reaction kinetic and its propagation by Conservative Element Solution Element (CESE) solver. Immersed boundary method is used to simulate the interface motion between the detonating gas and the deforming plate to facilitate the assessment of fluid pressure distribution on the plate surface. The numerical tool relates the pressure distribution and gaseous detonation parameters to the plate macroscopic deformation by employing multi-species reactive Euler’s equations for the gas and Lagrangian equation for plate. Numerical method as an appropriate tool in the evaluation of the deflection profile of the triangular plate shows that deflection decreases by the smaller size of the exposed area of the plate.

کلیدواژه‌ها [English]

  • Triangular plate
  • Gaseous detonation
  • Numerical simulations
  • Immersed boundary method

Smiley face

[1] Li J, Ren H, Ning J. Numerical application of additive Runge-Kutta methods on detonation interaction with pipe bends. International Journal of Hydrogen Energy. 2013;38(21):9016-27.##
[2] Lepikhin P, Romashchenko V, Beiner O. A numerical study of 3D dynamics and strength of metal-composite cylinders under internal explosion loading. Strength of Materials. 2017;49(6):796-808.##
[3] Malekan M, Khosravi A, Cimini Jr CA. Deformation and fracture of cylindrical tubes under detonation loading: A review of numerical and experimental analyses. International Journal of Pressure Vessels and Piping. 2019;173:114-32.##
[4] Mirzaei M, Najafi M, Niasari H. Experimental and numerical analysis of dynamic rupture of steel pipes under internal high-speed moving pressures. International Journal of Impact Engineering. 2015;85:27-36.##
[5] Veisi B, Narooei K, Zamani J. Numerical investigation of circular plates deformation under air blast wave. Iranian Journal of Materials Forming. 2016;3(1):12-26.##
[6] Amini M, Amirkhizi A, Nemat-Nasser S. Numerical modeling of response of monolithic and bilayer plates to impulsive loads. International Journal of Impact Engineering. 2010;37(1):90-102.##
[7] Costin NS. Numerical simulation of detonation of an explosive atmosphere of liquefied petroleum gas in a confined space. Defence Technology. 2014;10(3):294-7.##
[8] Debnath P, Pandey K. Numerical analysis of detonation combustion wave in pulse detonation combustor with modified ejector with gaseous and liquid fuel mixture. Journal of Thermal Analysis and Calorimetry. 2020:1-12.##
[9] Wu C, Lukaszewicz M, Schebella K, Antanovskii L. Experimental and numerical investigation of confined explosion in a blast chamber. Journal of Loss Prevention in the Process Industries. 2013;26(4):737-50.##
[10] Sugiyama Y, Homae T, Matsumura T, Wakabayashi K. Numerical study on the mitigation effect of glass particles filling a partially confined space on a blast wave. International Journal of Multiphase Flow. 2021;136:103546.##
[11] Yao S, Zhang D, Lu Z, Lin Y, Lu F. Experimental and numerical investigation on the dynamic response of steel chamber under internal blast. Engineering Structures. 2018;168:877-88.##
[12] Yan C, Wang Z, Liu K, Zuo Q, Zhen Y, Zhang S. Numerical simulation of size effects of gas explosions in spherical vessels. Simulation. 2017;93(8):695-705.##
[13] Xu H, Ni X, Su X, Xiao B, Luo Y, Zhang F, et al. Experimental and numerical investigation on effects of pre-ignition positions on knock intensity of hydrogen fuel. International Journal of Hydrogen Energy. 2021;46(52):26631-45.##
[14] Yuen SCK, Nurick G. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load. International Journal of Impact Engineering. 2005;31(1):55-83.##
[15] Mehreganian N, Louca L, Langdon G, Curry R, Abdul-Karim N. The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques. International Journal of Impact Engineering. 2018;115:81-93.##
[16] Chafi MS, Karami G, Ziejewski M. Numerical analysis of blast-induced wave propagation using FSI and ALEmulti-material formulations. International Journal of Impact Engineering. 2009;36(10-11):1269-75.##
[17] Im K, Cook Jr G, Zhang Z-C. FSI Based on CESE Compressible Flow Solver with Detailed Finite Rate Chemistry.##
[18] Kim D-h, Yoh JJ. Predictive model of onset of pipe failure due to a detonation of hydrogen–air and hydrocarbon–air mixtures. international journal of hydrogen energy. 2009;34(3):1613-9.##
[19] Safari K, Zamani J, Khalili S, Jalili S. Experimental, theoretical, and numerical studies on the response of square plates subjected to blast loading. The Journal of Strain Analysis for Engineering Design. 2011;46(8):805-16.##
[20] Salvadore F, Bernardini M, Botti M. GPU accelerated flow solver for direct numerical simulation of turbulent flows. Journal of Computational Physics. 2013;235:129-42.##
[21] Samiee A, Amirkhizi AV, Nemat-Nasser S. Numerical study of the effect of polyurea on the performance of steel plates under blast loads. Mechanics of Materials. 2013;64:1-10.##
[22] Yaşar M, Demirci HI, Kadi I. Detonation forming of aluminium cylindrical cups experimental and theoretical modelling. Materials & design. 2006;27(5):397-404.##
[23] Xue Y, Chen G, Zhang Q, Xie M, Ma J. Simulation of the dynamic response of an urban utility tunnel under a natural gas explosion. Tunnelling and Underground Space Technology. 2021;108:103713.##
[24] Rokhy H, Soury H. Fluid structure interaction with a finite rate chemistry model for simulation of gaseous detonation metal-forming. International Journal of Hydrogen Energy. 2019;44(41):23289-302.##
[25] Gwak M-c, Lee Y, Kim K-h, Yoh JJ. Deformable wall effects on the detonation of combustible gas mixture in a thin-walled tube. International Journal of Hydrogen Energy. 2015;40(7):3006-14.##
[26] Aune V, Valsamos G, Casadei F, Langseth M, Børvik T. Fluid-structure interaction effects during the dynamic response of clamped thin steel plates exposed to blast loading. International Journal of Mechanical Sciences. 2021;195:106263.##
[27] Rokhy H, Mostofi TM. 3D numerical simulation of the gas detonation forming of aluminum tubes considering fluid-structure interaction and chemical kinetic model. Thin-Walled Structures. 2021;161:107469.##
[28] Im K, Cook Jr G, Jhang Z, Lee S, editors. FSI detailed chemistry and their applications in LS-DYNA CESE compressible solver. 11th European LS-DYNA® user conference; Salzburg, Austria; 2015.##
[29] Zhang Z-c, Cook Jr G, Im K-s. Overview of the CESE Compressible Fluid and FSI Solvers.##
[30] Evans JS, Schexnayder Jr CJ. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames. AIAA journal. 1980;18(2):188-93.##
[31] Gato C. Detonation-driven fracture in thin shell structures: Numerical studies. Applied Mathematical Modelling. 2010;34(12):3741-53.##
[32] Heidari A, Wen JX. Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture. International Journal of Hydrogen Energy. 2014;39(36):21317-27.##
[33] Khaleghi M, Aghazadeh BS, Bisadi H. Efficient oxyhydrogen mixture determination in gas Detonation forming. Int J Mech Mechatron Eng. 2013;7:1748-54.##
[34] Niasari H, Liaghat G. Numerical investigation of dynamic crack growth in steel pipes under internal detonation loading. Modares Mechanical Engineering. 2017;17(9):214-24.##
دوره 19، شماره 1 - شماره پیاپی 71
شماره پیاپی 71، فصلنامه بهار
خرداد 1402
صفحه 1-15
  • تاریخ دریافت: 19 فروردین 1401
  • تاریخ بازنگری: 15 اردیبهشت 1401
  • تاریخ پذیرش: 24 اردیبهشت 1401
  • تاریخ انتشار: 01 خرداد 1402