تحلیل میدان دمای گُذرای دیسک و پد ترمز FGM به صورت مدل سه بعدی متقارن

نوع مقاله : گرایش پیشرانش و انتقال حرارت

نویسندگان

1 نویسنده مسئول: استادیار، دانشکده مهندسی، دانشگاه ملایر، ملایر، ایران

2 دانشجو کارشناسی ارشد، دانشکده مهندسی، دانشگاه ملایر، ملایر، ایران

چکیده

عملکرد صحیح سیستم ترمز در تمام شرایط رانندگی، در حفظ جان سرنشینان خودرو بسیار مؤثر است. یکی از سیستم‌های ترمز اصطکاکی، سیستم ترمز دیسک و پد است. در این تحقیق با استفاده از دیسک و پد FGM، بهبود در انتقال حرارت و خواص گرمایی سیستم ترمز  بررسی و  یک مدل سه‌بعدی تحلیلی برای تعیین توزیع دمای تماس بر روی سطح کاری ترمز در نظر گرفته شده است. با در نظر گرفتن اثرات پد به‌عنوان منبع گرمایی، از روش المان محدود برای مشخص کردن حوزه دمایی دیسک با شرایط مرزی حرارتی مناسب استفاده می‌شود. خصوصیات مادی اجزای تشکیل‌دهنده دیسک و پد ترمز با پیروی از قانون توزیع توانی در راستای ضخامت تغییر می‌کنند و تأثیر خواص دیسک و پد بر نتایج تحلیل حرارتی موردبررسی قرار می‌گیرد. همان‌گونه که در این پژوهش مشخص شده، با انتخاب ساختار FGM یک‌بار برای دیسک به‌تنهایی و یک‌بار برای دیسک و پد با لایه‌هایی از جنس‌های مشخص شده، می‌توان سرعت انتقال حرارت را افزایش و  آسیب‌های حرارتی را کاهش داد. دمای بیشینه در ساختار FGM  مقدار ۳۲۴ درجه سانتی‌گراد می‌باشد، درحالی‌که در تحقیقات گذشته این مقدار ۲۷۹ درجه سانتی‌گراد بود و شیب کاهش دما در ساختار FGM نسبت به ساختار غیر FGM بیشتر است که این موضوع نشان‌دهنده توانایی ساختار FGM در بهبود انتقال حرارت ناشی از ترمزگیری می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Transient Temperature Field Analysis of FGM Brake Disk and Pad as a Symmetric Three-Dimensional Model

نویسندگان [English]

  • Ali Shahrjerdi 1
  • Ali SafariFard 2
1 Corresponding author: Assistant Professor, Faculty of Engineering, Malayer University, Malayer, Iran
2 MSc, Faculty of Engineering, Malayer University, Malayer, Iran
چکیده [English]

The accurate performance of the braking system in all driving conditions is significantly effective in saving the life of the car's occupants. The disk and pad braking system is regarded as one of the friction braking systems. Employing the FGM disks and pads, the improvement of heat transfer and thermal properties of the braking system is investigated in this research. In order to specify the contact temperature distribution on the work surface of the brake, a three-dimensional analytical model is considered. Using the FEM, the temperature range of the disk with the appropriate thermal boundary conditions is determined based on the effects of the pad as a heat source. Following the power law of distribution, the material properties of the brake disk components change within the thickness and the effect of disk and pad properties on the thermal analysis results is examined. As stated in this research, selecting FGM structure only for the disk and once for the disk and pad with layers of the specified materials, the heat transfer rate can be raised, and the heat damage can be minimized. The maximum temperature in the FGM structure is 324 °C; however, in the previous research, this value is 272 °C and the slope of the temperature reduction in the FGM structure is more significant compared to the non-FGM structure which indicates the capability of the FGM structure to improve heat transfer resulting from braking.

کلیدواژه‌ها [English]

  • Disk
  • Pad
  • heat transfer
  • FGM

Smiley face

[1] Rezaei J, Moradi M, Rekrak D. Simulation of temperature and pressure distribution in disc brakes by finite element method. 3rd International Conference on Science and Engineering, Istanbul, Turkey, 2016 (In Persian).##
[2] Behdarvandi A, Bahoush Kazeruni R. Heat transfer in the brake disc. 1st Annual National Conference on Mechanical Engineering and Industrial Solutions. Mashhad, Iran, 2015 (In Persian).##
[3] Parker R, Newcomb T. The Performance and Characteristics of the Disk Brake. SAE Technical Paper 640140, 1964.##
[4] Limpert R. Cooling Analysis of Disk Brake Rotors. 1975, SAE Tech Pap 751014.##
[5] Nigh GL, Olson M. Finite element analysis of rotating disks. Journal of Sound and Vibration. 1981;77(1):61-78.##
[6] Gao C, Lin X. Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model. Journal of materials processing technology. 2002;129(1-3):513-7.##
[7] Jang YH, Ahn S-h. Frictionally-excited thermoelastic instability in functionally graded material. Wear. 2007;262(9-10):1102-12.##
[8] Chi Z, He Y, Naterer G. Convective heat transfer optimization of automotive brake discs. SAE Int J Passeng Cars-Mech Syst. 2009;2(1):961-9.##
[9] Samadi R. Farzanegan M, Asadian M, Khorami M. Investigation of the effect of pads and discs on the performance of the brake system. 9th Rail Transportation Conference, Tehran, Iran, 2007. (In Persian).##
[10] Yevtushenko A, Kuciej M, Och E. Temperature in thermally nonlinear pad–disk brake system. International Communications in Heat and Mass Transfer. 2014;57:274-81.##
[11] Behdarvandi A, Bahoush Kazeruni  R. Simulation of thermal performance of brake disc using Ansys CFX software. 1st Annual National Conference on Mechanical Engineering and Industrial Solutions, Mashhad, Iran, 2015 (In Persian).##
[12] Khodaei Anaraki P, Hosseinzadeh Kashan A. Optimization of ventilated brake discs using simulation and multi-objective algorithm 1II-NSGA. 2nd National Conference on Engineering Management, Astaneh Ashrafieh, 2017 (In Persian).##
[13] Moinzadeh M. Control of turbulence and corresponding noises in car disc brake system. 3rd National Conference on Mechanical Engineering, Esfarayen,  Iran, 2017 (In Persian).##
[14] Arnab B, Islam S, Khalak A, Afsar A. Finite difference solution to thermoelastic field in a thin circular FGM disk with a concentric hole. Procedia Engineering. 2014;90:193-8.##
[15] Rezvani Tavakol M. A Review of the Theory and Approximation of Mechanical Properties of FGM Functional Materials by Introducing These Materials in Nature and Its Applications in Industry. Science Engineering Elite Quarterly. 2017;2(1):171-182.##
[16] Zagrodzki P, Lam K, Al Bahkali E, Barber J. Nonlinear transient behavior of a sliding system with frictionally excited thermoelastic instability. J Trib. 2001;123(4):699-708.##
[17] Davies M. Solutions to Fourier's equation and unsteady heat flow through structures. Building and Environment. 1995;30(3):309-21.##
[18] Yu CC, Heinrich JC. Petrov—Galerkin method for multidimensional, time‐dependent, convective‐diffusion equations. International Journal for numerical methods in engineering. 1987;24(11):2201-15.##
[19] Hibbitt, Karlsson, Sorensen. ABAQUS: theory manual: Hibbitt, Karlsson & Sorensen; 1997.##
دوره 18، شماره 1 - شماره پیاپی 67
شماره پیاپی 67، فصلنامه بهار
خرداد 1401
صفحه 41-52
  • تاریخ دریافت: 28 بهمن 1399
  • تاریخ بازنگری: 01 آبان 1400
  • تاریخ پذیرش: 26 آبان 1400
  • تاریخ انتشار: 01 اردیبهشت 1401