تحلیل دینامیکی سیستم سورتمه جرم متغیر تحت نیروهای متغیر

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران

2 نویسنده مسئول: دانشیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران

3 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران

چکیده

از سیستم سورتمه به‌منظور آزمایش سازه‌های ضد نفوذ، آزمون پرش صندلی خلبان و تجهیزات فضایی استفاده می‌شود که فناوری آن در اختیار تعداد اندکی از کشورهای پیشرفته است. در این پژوهش، تحلیل دینامیکی نیروهای وارد بر یک نمونه از این سیستم، موردبررسی قرار گرفته است. نیروهای مؤثر وارد بر سورتمه شامل نیروی پیشرانه، نیروی پسا و برآ و نیروی اصطکاک است که همگی متغیر می‌باشند. به‌منظور به دست آوردن نیروی پیشرانه با توجه به مشخصات عملکردی و هندسی سورتمه طراحی‌شده، اقدام به طراحی گرین موتور سورتمه جهت رسیدن به سرعت 0/85 ماخ در مدت یک ثانیه شده است. پس از استخراج معادلات حاکم جهت به دست آوردن نیروی پیشرانه، با استفاده از برنامه‌نویسی، تغییرات نیروی پیشرانه در طول زمان سوزش به دست آورده شده و فرموله می‌شود. در مرحله بعد برای به دست آوردن نیروهای برآ و پسا از شبیه‌سازی عددی استفاده‌ شده و پس از صحت‌سنجی روش عددی با پژوهشی تجربی، مقادیر نیروی پسا و برآ در سرعت‌های مختلف استخراج و فرموله می‌گردد. در ادامه با توجه به تغییرات جرم سورتمه در مدت سوزش، نیروی اصطکاک بین ریل و کفشک سورتمه به دست آورده می‌شود. در نهایت معادله دیفرانسیل سیستم استخراج و رفتار دینامیکی سیستم تحلیل می‌شود. نتایج نشان می‌دهد که بیشترین فشار در قسمت داخلی کفشک واردشده که در سرعت‌های بالا می‌تواند منجر به سایش و خرابی سطح ریل شده و منجر به انحراف سورتمه از مسیر ریل گردد. همچنین میزان نیروی اصطکاک در برابر سایر نیروها قابل صرف‌نظر است.

کلیدواژه‌ها


Smiley face

[1] Biserod H, Fossumstuen K, Orbekk E, Tokerud D, Kaiserman M, Rodack M, et al., editors. The Hypervelocity Anti-Tank Missile Development Program; Passive Separation Mechanism. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2005.##
[2] Nakata D, Yajima J, Nishine K, Higashino K, Tanatsugu N, Kozu A, editors. Research and development of high-speed test track facility in Japan. 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition; 2012.##
[3] Aguilar D, Gallon JC, Hennings EJ, Johnson MR, Marti B, Meacham MB, et al., editors. Rocket sled strength testing of large, supersonic parachutes. 23rd AIAA Aerodynamic Decelerator Systems Technology Conference; 2015.##
[4] Gragossian A, Pierrottet DF, Estes J, Barnes BW, Amzajerdian F, Hines GD, editors. Navigation Doppler Lidar performance analysis at high speed and long range. AIAA Scitech 2020 Forum; 2020.##
[5] Morin C, Sparks K. Developing a High Altitude Simulating, Dynamic, Ground Test Capability at the Holloman AFB High Speed Test Track.  USAF Developmental Test and Evaluation Summit2004. p. 6834.##
[6] Bergeron D. Holloman High Speed Test Track Maglev Program UpdateThe Holloman High Speed Test Track Magnetically Levitated (MAGLEV) Sled Six Degree-of-Freedom ModelHolloman High Speed Test Track Maglev Program Update.  US Air Force T&E Days 2010. p. 1707.##
[7] DAVIES H, SMITH D. Design Considerations of Two Large Liquid Rocket Sled Pusher Vehicles. Journal of Jet Propulsion. 1957;27(9):999-1006.##
[8] Garzon A, Matisheck J, editors. Supersonic testing of natural laminar flow on sharp leading-edge airfoils. Recent Experiments by Aerion Corporation. 42nd AIAA Fluid Dynamics Conference and Exhibit; 2012.##
[9] Nakata D, Kozu A, Yajima J, Nishine K, Higashino K, Tanatsugu N. Predicted and experimented acceleration profile of the rocket sled. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan. 2012;10(ists28):Ta_1-Ta_5.##
[10] Connell T, Young G, Beckett K, Gonzalez DR, editors. Enhanced solid fuel regression in a hybrid rocket employing additively manufactured fuels exhibiting novel grain port geometries. AIAA Scitech 2019 Forum; 2019.##
[11] Khosla P, Khanna R, Sood SP. Analysis of Magneto-inductive System for Rocket Sled Velocity Measurement Beyond Mach 1.5. Defence Science Journal. 2014;64(2).##
[12] CHEVULA S. Design and Testing of Rocket Motors with Composite Propellants. Int J of Mechanical and Production Engineering Research and Development. 2019;9(4):745-52.##
[13] El-Naggar M, Belal H, Abdalla H, editors. Experimental investigation of star grains in dual thrust solid propellant motors. IOP Conference Series: Materials Science and Engineering; 2020: IOP Publishing.##
[14] El-Naggar M, Belal H, Abdalla H, editors. Parametric study of solid propellant slotted grain. International Conference on Aerospace Sciences and Aviation Technology; 2021: The Military Technical College.##
[15] Oh S-H, Lee HJ, Roh T-S. Development of a hybrid method in a 3-D numerical burn-back analysis for solid propellant grains. Aerospace Science and Technology. 2020;106:106103.##
[16] Oh S-H, Lee HJ, Roh T-S. New Design Method of Solid Propellant Grain Using Machine Learning. Processes. 2021;9(6):910.##
[17] Chandru RA, Balasubramanian N, Oommen C, Raghunandan B. Additive manufacturing of solid rocket propellant grains. Journal of Propulsion and Power. 2018;34(4):1090-3.##
[18] Xiao J, Zhang W, Xue Q, Gao W, Zhang L. Modal Analysis for Single Track Sled, no. Pmsms, 2018.##
[19] Lamb JL. Critical velocities for rocket sled excitation of rail resonance. Johns Hopkins APL technical digest. 2000;21(3):448-58.##
[20] Turnbull D, Hooser C, Hooser M, Myers J. Soft sled test capability at the holloman high speed test track.  US Air Force T&E Days 20102010. p. 1708.##
[21] Hooser M, Schwing A, editors. Validation of dynamic simulation techniques at the Holloman high speed test track. 38th Aerospace Sciences Meeting and Exhibit; 2000.##
[22] Sutton GP, Biblarz O. Rocket propulsion elements: John Wiley & Sons; 2016.##
[23] Hashish CEAEA. Design of solid motor for predefined performance criteria. military technical college. 2018.##
[24] Novinzadeh A, Mohammadi M, Zakeri M. Design of solid rocket booster based on collaborative design theory. Journal of Mechanical Engineering Amirkabir. 2012;44(1):57-65.##
[25] Fouladi N. Principles of solid propellant systems design, Mechanics and aerospace, 2010.##
[26] Lara MR. ATK Space propulsion products catalog. Alliant Techsystems Inc. 2008;5.##
[27] Raeesi H, Ahangarian M. Initial design of solid fuel rocket engine for space programs, 2016.##
[28] Guozhu AAL. Three Dimensional Modified Star Grain Design and Burnback Analysis. international journal of modeling and optimization. 2017;7.##
[29] Abdelaziz A, Guozhu L, editors. Two dimensional star grain optimization method using genetic algorithm. 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST); 2018: IEEE.##
[30] Zeping W, Donghui W, Weihua Z, Okolo. N P, Yang F. Solid-rocket-motor performance-matching design framework. Journal of Spacecraft and Rockets. 2017;54(3):698-707.##
[31] Hao Z, Haowen L, Pengcheng W, Guobiao C, Feng H. Uncertainty analysis and design optimization of solid rocket motors with finocyl grain. Structural and Multidisciplinary Optimization. 2020;62(6):3521-37.##
[32] Solid Propulsion Nomenclature Guide, Johns Hopkins University, 1965.##
[33] Carlson HW, Gapcynski JP. An Experimental Investigation at a Mach Number of 2.01 of the Effects of Body Cross-Section Shape on the Aerodynamic Characteristics of Bodies and Wing-Body Combinations. 1955.##
[34] Zhang P, Nagae T, McCormick J, Ikenaga M, Katsuo M, Nakashima M, editors. Friction-based sliding between steel and steel, steel and concrete, and wood and stone. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China; 2008.##
دوره 18، شماره 1 - شماره پیاپی 67
شماره پیاپی 67، فصلنامه بهار
خرداد 1401
صفحه 123-136
  • تاریخ دریافت: 24 تیر 1400
  • تاریخ بازنگری: 16 آبان 1400
  • تاریخ پذیرش: 23 آبان 1400
  • تاریخ انتشار: 01 اردیبهشت 1401