[1] Liu J, Zhang G, Qin J, Zhang W, Xing Y, Guo D, et al. Field emission from combined structures of carbon nanotubes and carbon nanofibers. Physica B: Condensed Matter. 2010;405(11):2551-5.##
[2] Homma Y, Yamashita T, Kobayashi Y, Ogino T. Interconnection of nanostructures using carbon nanotubes. Physica B: Condensed Matter. 2002;323(1-4):122-3.##
[3] Lau K-T, Chipara M, Ling H-Y, Hui D. On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites Part B: Engineering. 2004;35(2):95-101.##
[4] Kim S, Jamalzadeh N, Zare Y, Hui D, Rhee KY. Considering the filler network as a third phase in polymer/CNT nanocomposites to predict the tensile modulus using Hashin-Hansen model. Physica B: Condensed Matter. 2018;541:69-74.##
[5] Rafiee R. Characterization of the electrical and electromagnetic properties of CNT-based composites. Modares Mechanical Engineering. 2014;13(12):88-100.##
[6] Mondali M, Yousefi M. Prediction a range for elastic modulus of CNT reinforced polymer composites using analytical method. Modares Mechanical Engineering. 2014;14(7):52-60.##
[7] Koranian SE, Esmaeelzadeh Khadem S, Kokabi M. Nonlinear free vibration analysis of the polymeric nanocomposite viscoelastic plates containing carbon nanotubes. Modares Mechanical Engineering. 2017;16(11):429-38.##
[8] Khansari M, Khodarahmi H, Vaziri A. Experimental study of ballistic properties of hybrid aluminum and epoxy matrix composite reinforced with carbon nanotube. Modares Mechanical Engineering. 2017;17(8):126-32.##
[9] Yang W, Wang X, Fang C, Lu G. Electromechanical coupling characteristics of carbon nanotube reinforced cantilever nano-actuator. Sensors and Actuators A: Physical. 2014;220:178-87.##
[10] Yang W, Wang X. Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. International Journal of Mechanical Sciences. 2016;107:34-42.##
[11] Yang W, Kang W, Wang X. Scale-dependent pull-in instability of functionally graded carbon nanotubes-reinforced piezoelectric tuning nano-actuator considering finite temperature and conductivity corrections of Casimir force. Composite Structures. 2017;176:460-70.##
[12] Shooshtari A, Mobarekeh DD. Nonlinear free vibration of a single layered nanoplate based on the nonlocal elasticity. Modares Mechanical Engineering. 2014;13(15):223-36.##
[13] Atabakhshian V, Shooshtari A, Karimi M. Electro-thermal vibration of a smart coupled nanobeam system with an internal flow based on nonlocal elasticity theory. Physica B: Condensed Matter. 2015;456:375-82.##
[14] Mehralian F, Beni YT, Zeverdejani MK. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Physica B: Condensed Matter. 2017;514:61-9.##
[15] Ghayesh MH, Farajpour A. Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. International Journal of Engineering Science. 2018;129:84-95.##
[16] Ke L-L, Wang Y-S, Wang Z-D. Thermal effect on free vibration and buckling of size-dependent microbeams. Physica E: Low-dimensional Systems and Nanostructures. 2011;43(7):1387-93.##
[17] Rafieipour H, Lotfavar A, Hamze SS. Nonlinear vibration analysis of functionally graded beam on Winkler-Pasternak foundation under mechanical and thermal loading via homotopy analysis method. Modares Mechanical Engineering. 2013.##
[18] Pourashraf ST, Ansari R. Nonlinear forced vibration analysis of functionally graded nanobeams in thermal environments with considering surface stress and nonlocal effects. Modares Mechanical Engineering. 2015;14(16):17-26.##
[19] Keshavarzpour H. Primary resonance analysis of a curved single walled carbon nanotubes on the viscoelastic medium in thermal environment under harmonic force. Modares Mechanical Engineering. 2018;18(5):211-7.##
[20] Ebrahimi F, Reza Barati M. Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. The European Physical Journal Plus. 2017;132(1):1-13.##
[21] Barati MR. On non-linear vibrations of flexoelectric nanobeams. International Journal of Engineering Science. 2017;121:143-53.##
[22] Wang L, Ni Q. On vibration and instability of carbon nanotubes conveying fluid. Computational Materials Science. 2008;43(2):399-402.##
[23] Rashidi V, Mirdamadi HR, Shirani E. A novel model for vibrations of nanotubes conveying nanoflow. Computational Materials Science. 2012;51(1):347-52.##
[24] Hosseini M, Zandi Baghche Maryam A. Static and dynamic analysis of nano-tube conveying fluid under electrostatic actuation. Modares Mechanical Engineering. 2017;16(11):165-76.##
[25] Arani AG, Zarei MS, Amir S, Maraghi ZK. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model. Physica B: Condensed Matter. 2013;410:188-96.##
[26] Maraghi ZK, Arani AG, Kolahchi R, Amir S, Bagheri M. Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Composites Part B: Engineering. 2013;45(1):423-32.##
[27] Mahmoudpour E, Hosseini-Hashemi S, Faghidian S. Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Applied Mathematical Modelling. 2018;57:302-15.##
[28] Mahmoudpour E, Hosseini-Hashemi S, Faghidian S. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates. Structural Engineering and Mechanics: An International Journal. 2018;68(1):103-19.##
[29] Ghayesh MH, Farajpour A. A review on the mechanics of functionally graded nanoscale and microscale structures. International Journal of Engineering Science. 2019;137:8-36.##
[30] Mahmoudpour E, Hosseini-Hashemi S, Faghidian S. Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory. Microsystem Technologies. 2019;25(3):951-64.##
[31] Jafari AA, Jafari MS. Free and forced vibration of rotating FGM beam with piezoelectric layer. Journal of Aerospace Mechanics. 2020;16(1):1-13.##
[32] Vatankhah R, Kahrobaiyan M, Alasty A, Ahmadian M. Nonlinear forced vibration of strain gradient microbeams. Applied Mathematical Modelling. 2013;37(18-19):8363-82.##
[33] Mirramezani M, Mirdamadi HR. Effects of nonlocal elasticity and Knudsen number on fluid–structure interaction in carbon nanotube conveying fluid. Physica E: Low-dimensional Systems and Nanostructures. 2012;44(10):2005-15.##
[34] Hoseini M, Zandi Baghche Maryam A. Analytical Analysis for Free Vibration of Different Arrangements of BNNTs under Initially Stress. Journal of Aerospace Mechanics. 2019;15(3):33-46.##