پاسخ غیرخطی و پایداری نانولوله‌های فلکسوالکتریک حامل سیال تحت میدان دمایی با استفاده از تئوری گرادیان کرنش غیرموضعی

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 نویسنده مسئول: استادیار، گروه مکانیک، دانشکده فنی مهندسی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران

2 کارشناسی ارشد، باشگاه پژوهشگران جوان و نخبگان، واحد خرم‌آباد، دانشگاه آزاد اسلامی، خرم‌آباد، ایران

چکیده

در این مقاله روش مقیاس های چندگانه برای حل معادلات ارتعاشات آزاد و اجباری غیرخطی نانولوله‌های فلکسوالکتریک حامل سیال لزج، تحت میدان دمایی واقع بر روی فونداسیون الاستیک غیرخطی با استفاده از تئوری گرادیان کرنش غیرموضعی ارائه شده است. با فرض تئوری تیر اولر- برنولی با تکیه‌گاه ساده و هندسه غیرخطی ون‌کارمن، معادله دیفرانسیل حاکم بر ارتعاشات غیرخطی استخراج ‌شده است. یک ولتاژ الکتریکی به سطح بالای نانولوله اعمال ‌می‌شود که شرایط میدان الکتریکی مدار بسته را ایجاد می‌کند. در پایان، اثر پارامترهای مختلف مانند تغییرات دما، ولتاژ الکتریکی و ... بر روی قسمت‌های حقیقی و موهومی فرکانس‌های طبیعی بررسی ‌شده است. همچنین، اثر ضریب فلکسوالکتریک بر رزنانس اولیه، زیرهارمونیک و فوق هارمونیک بررسی شده است. نتایج نشان می دهد که ضریب فلکسوالکتریک باعث می شود که در رزنانس اولیه و فوق هارمونیک، در ابتدا سیستم رفتار سخت شونده از خود نشان می دهد و پدیده پرش کاملا مشخص است. اما با افزایش آن،  سیستم رفتار نرم شونده از خود نشان می دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Nonlinear Response and Stability of Flexoelectric Nanotube Conveying Fluid under Temperature Field using Nonlocal Strain Gradient Theory

نویسندگان [English]

  • Ebrahim Mahmoudpour 1
  • Ali Parsa 2
  • Mohammad Parsa 2
1 Corresponding author: Assistant Professor, Department of Mechanics, Faculty of Technical Engineering, Borujard Branch, Islamic Azad University, Borujard, Iran
2 MSc,, Young and Elite Researchers Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
چکیده [English]

In this article, the method of multiple scales is presented for solving nonlinear free and forced vibration equations of flexoelectric nanotube conveying viscous fluid under a temperature field located on a nonlinear elastic foundation using nonlocal strain gradient theory. By assuming simple Euler-Bernoulli beam theory and the nonlinear geometry of Van Carmen, the differential equation governing nonlinear vibrations was derived. An electrical voltage was applied to the upper surface of the nanotube, which created the electric field conditions of the closed circuit. Finally, the effect of different parameters such as temperature changes, electrical voltage, etc. on the real and imaginary parts of natural frequencies was investigated. Also, the effect of flexoelectric coefficient on primary, subharmonic and super harmonic resonance was investigated. The results show that the flexoelectric coefficient at the primary and super harmonic resonance initially causes the hardening behavior in the system and the jump phenomenon is quite clear; But as it increases, the system shows softening behavior.

کلیدواژه‌ها [English]

  • Nonlinear free and forced vibrations
  • Flexoelectric nanotube carrying fluid
  • Temperature field

Smiley face

[1] Liu J, Zhang G, Qin J, Zhang W, Xing Y, Guo D, et al. Field emission from combined structures of carbon nanotubes and carbon nanofibers. Physica B: Condensed Matter. 2010;405(11):2551-5.##
[2] Homma Y, Yamashita T, Kobayashi Y, Ogino T. Interconnection of nanostructures using carbon nanotubes. Physica B: Condensed Matter. 2002;323(1-4):122-3.##
[3] Lau K-T, Chipara M, Ling H-Y, Hui D. On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites Part B: Engineering. 2004;35(2):95-101.##
[4] Kim S, Jamalzadeh N, Zare Y, Hui D, Rhee KY. Considering the filler network as a third phase in polymer/CNT nanocomposites to predict the tensile modulus using Hashin-Hansen model. Physica B: Condensed Matter. 2018;541:69-74.##
[5] Rafiee R. Characterization of the electrical and electromagnetic properties of CNT-based composites. Modares Mechanical Engineering. 2014;13(12):88-100.##
[6] Mondali M, Yousefi M. Prediction a range for elastic modulus of CNT reinforced polymer composites using analytical method. Modares Mechanical Engineering. 2014;14(7):52-60.##
[7] Koranian SE, Esmaeelzadeh Khadem S, Kokabi M. Nonlinear free vibration analysis of the polymeric nanocomposite viscoelastic plates containing carbon nanotubes. Modares Mechanical Engineering. 2017;16(11):429-38.##
[8] Khansari M, Khodarahmi H, Vaziri A. Experimental study of ballistic properties of hybrid aluminum and epoxy matrix composite reinforced with carbon nanotube. Modares Mechanical Engineering. 2017;17(8):126-32.##
[9] Yang W, Wang X, Fang C, Lu G. Electromechanical coupling characteristics of carbon nanotube reinforced cantilever nano-actuator. Sensors and Actuators A: Physical. 2014;220:178-87.##
[10] Yang W, Wang X. Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. International Journal of Mechanical Sciences. 2016;107:34-42.##
[11] Yang W, Kang W, Wang X. Scale-dependent pull-in instability of functionally graded carbon nanotubes-reinforced piezoelectric tuning nano-actuator considering finite temperature and conductivity corrections of Casimir force. Composite Structures. 2017;176:460-70.##
[12] Shooshtari A, Mobarekeh DD. Nonlinear free vibration of a single layered nanoplate based on the nonlocal elasticity. Modares Mechanical Engineering. 2014;13(15):223-36.##
[13] Atabakhshian V, Shooshtari A, Karimi M. Electro-thermal vibration of a smart coupled nanobeam system with an internal flow based on nonlocal elasticity theory. Physica B: Condensed Matter. 2015;456:375-82.##
[14] Mehralian F, Beni YT, Zeverdejani MK. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Physica B: Condensed Matter. 2017;514:61-9.##
[15] Ghayesh MH, Farajpour A. Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. International Journal of Engineering Science. 2018;129:84-95.##
[16] Ke L-L, Wang Y-S, Wang Z-D. Thermal effect on free vibration and buckling of size-dependent microbeams. Physica E: Low-dimensional Systems and Nanostructures. 2011;43(7):1387-93.##
[17] Rafieipour H, Lotfavar A, Hamze SS. Nonlinear vibration analysis of functionally graded beam on Winkler-Pasternak foundation under mechanical and thermal loading via homotopy analysis method. Modares Mechanical Engineering. 2013.##
[18] Pourashraf ST, Ansari R. Nonlinear forced vibration analysis of functionally graded nanobeams in thermal environments with considering surface stress and nonlocal effects. Modares Mechanical Engineering. 2015;14(16):17-26.##
[19] Keshavarzpour H. Primary resonance analysis of a curved single walled carbon nanotubes on the viscoelastic medium in thermal environment under harmonic force. Modares Mechanical Engineering. 2018;18(5):211-7.##
[20] Ebrahimi F, Reza Barati M. Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory. The European Physical Journal Plus. 2017;132(1):1-13.##
[21] Barati MR. On non-linear vibrations of flexoelectric nanobeams. International Journal of Engineering Science. 2017;121:143-53.##
[22] Wang L, Ni Q. On vibration and instability of carbon nanotubes conveying fluid. Computational Materials Science. 2008;43(2):399-402.##
[23] Rashidi V, Mirdamadi HR, Shirani E. A novel model for vibrations of nanotubes conveying nanoflow. Computational Materials Science. 2012;51(1):347-52.##
[24] Hosseini M, Zandi Baghche Maryam A. Static and dynamic analysis of nano-tube conveying fluid under electrostatic actuation. Modares Mechanical Engineering. 2017;16(11):165-76.##
[25] Arani AG, Zarei MS, Amir S, Maraghi ZK. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model. Physica B: Condensed Matter. 2013;410:188-96.##
[26] Maraghi ZK, Arani AG, Kolahchi R, Amir S, Bagheri M. Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Composites Part B: Engineering. 2013;45(1):423-32.##
[27] Mahmoudpour E, Hosseini-Hashemi S, Faghidian S. Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Applied Mathematical Modelling. 2018;57:302-15.##
[28] Mahmoudpour E, Hosseini-Hashemi S, Faghidian S. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates. Structural Engineering and Mechanics: An International Journal. 2018;68(1):103-19.##
[29] Ghayesh MH, Farajpour A. A review on the mechanics of functionally graded nanoscale and microscale structures. International Journal of Engineering Science. 2019;137:8-36.##
[30] Mahmoudpour E, Hosseini-Hashemi S, Faghidian S. Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory. Microsystem Technologies. 2019;25(3):951-64.##
[31] Jafari AA, Jafari MS. Free and forced vibration of rotating FGM beam with piezoelectric layer. Journal of Aerospace Mechanics. 2020;16(1):1-13.##
[32] Vatankhah R, Kahrobaiyan M, Alasty A, Ahmadian M. Nonlinear forced vibration of strain gradient microbeams. Applied Mathematical Modelling. 2013;37(18-19):8363-82.##
[33] Mirramezani M, Mirdamadi HR. Effects of nonlocal elasticity and Knudsen number on fluid–structure interaction in carbon nanotube conveying fluid. Physica E: Low-dimensional Systems and Nanostructures. 2012;44(10):2005-15.##
[34] Hoseini M, Zandi Baghche Maryam A. Analytical Analysis for Free Vibration of Different Arrangements of BNNTs under Initially Stress. Journal of Aerospace Mechanics. 2019;15(3):33-46.##
دوره 18، شماره 1 - شماره پیاپی 67
شماره پیاپی 67، فصلنامه بهار
خرداد 1401
صفحه 21-39
  • تاریخ دریافت: 02 خرداد 1399
  • تاریخ بازنگری: 20 اسفند 1399
  • تاریخ پذیرش: 28 مهر 1400
  • تاریخ انتشار: 01 اردیبهشت 1401