مطالعه تجربی تأثیر پارامترهای مؤثر بر ضریب هدایت حرارتی نانوسیال هیبریدی پنج جزئی

نوع مقاله : گرایش پیشرانش و انتقال حرارت

نویسندگان

1 نویسنده مسئول: دانشیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 کارشناسی ارشد، گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده

در این پژوهش رفتار حرارتی نانوسیال هیبریدی پنج جزئی بر پایه برای نخستین‌بار در شرایط آزمایشگاهی مختلف مورد تجزیه و تحلیل و بررسی قرار گرفت. بررسی این نانوسیال با توجه به اهمیت نانولوله‌های کربنی و اینکه نانوسیالات هیبریدی دارای خواص ویژه‌ای هستند و کم بودن مطالعاتی با حضور سه نانوذره و دو سیال پایه، دارای اهمیت است. اندازه‌گیری‌های تجربی ضریب هدایت حرارتی توسط دستگاه KD2 Pro در کسرحجمی‌های %9/0-%05/0 و دماهای انجام گردید. برای شناسایی، تأیید ساختار و مورفولوژی نانوذرات از روش‌های عکس‌برداری TEM، SEM و آنالیز XRD استفاده گردید. نتایج نشان داد که ضریب هدایت حرارتی نسبی در کسر حجمی‌ها و دماهای بالا، بسیار بیش‌تر از کسرحجمی‌های پایین است. علت این موضوع، افزایش انرژی جنبشی و حضور بیش‌تر نانوذرات است. همچنین افزایش دما تأثیر کمی بر روی افزایش ضریب هدایت حرارتی نسبی داشت. بیش‌ترین افزایش ضریب هدایت حرارتی به میزان %3/28 در کسر حجمی و دمای 9/0 و °C 50 به ترتیب حاصل شد. کمترین افزایش ضریب هدایت حرارتی به میزان %4/1 در دمای °C 26 و کسر حجمی%05/0 بدست آمد. مدل ارائه شده برای پیش بینی ضریب هدایت حرارتی نانوسیال با استفاده از روش سطح پاسخ دارای دقت خوبی بود به گونه‌ای که تطابق خوبی بین نتایج مدلسازی و داده‌های آزمایشگاهی وجود دارد. مقادیر ، ، ، و بیانگر دقت خوب مدلسازی هستند. نتایج آنالیز حساسیت نیز بیانگر افزایش میزان حساسیت با افزایش کسر حجمی نانوذرات است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study of the Effect of Effective Parameters on the Thermal Conductivity of a Five-component Hybrid Nanofluid

نویسندگان [English]

  • Mohammad Hemmat Esfe 1
  • Sayyid Majid Motallebi 2
1 Corresponding author: Associate Professor, Department of Mechanical Engineering, Faculty of Engineering, Imam Hossein University, Tehran, Iran
2 MSc, Department of Chemical Engineering, Faculty of Engineering, Imam Hossein University, Tehran, Iran
چکیده [English]

In this study, the thermal behavior of a five-component hybrid nanofluid Al2O3(40%)/SiO2(45%)/MWCNT(15%)-Water(60%)/EG(40%) for the first time in different laboratory conditions is analyzed. The study of this nanofluid is important because of the importance of carbon nanotubes, the fact that hybrid nanofluids have special properties and the few studies with the presence of three nanoparticles and two base fluids. Experimental measurements of thermal conductivity are performed by KD2 Pro in volumetric fractions of 0.05-0.9% and temperatures of 26-50°C. TEM, SEM and XRD analysis methods are used to identify and confirm the structure and morphology of nanoparticles. The results show that the relative thermal conductivity in the high volume fraction and temperatures is much higher than the low volume fraction. This is due to the increased kinetic energy and the presence of more nanoparticles. Also, increasing the temperature has a small effect on increasing the relative thermal conductivity. The highest increase in thermal conductivity is 28.3% in volume fraction and temperature of 0.9% and 50 ° C, respectively. The lowest increase in thermal conductivity is 1.4% at 26 ° C and volume fraction of 0.05%. The proposed model for predicting the thermal conductivity of nanofluid using the response surface method is so accurate that there is a good agreement between the modeling results and laboratory data. The values of R-squared=0.9936, CV%=0.55, -1.85%<MOD< 0.91%, p-value<0.05 and F-value=1059.23 indicate good modeling accuracy. The results of sensitivity analysis also indicate an increase in sensitivity with increasing volume fraction of nanoparticles.

کلیدواژه‌ها [English]

  • Hybrid nanofluids
  • Thermal conductivity
  • Experimental study
  • Model validation

Smiley face

[1] Esfe MH, Alidoust S, Ardeshiri EM, Toghraie D. The effect of different parameters on ability of the proposed correlations for the rheological behavior of SiO2-MWCNT (90: 10)/SAE40 oil-based hybrid nano-lubricant and presenting five new correlations. ISA transactions. 2021.##
[2] Gulzar O, Qayoum A, Gupta R. Experimental study on thermal conductivity of mono and hybrid Al2O3–TiO2 nanofluids for concentrating solar collectors. International Journal of Energy Research. 2021;45(3):4370-84.##
[3] Riahi A, Khamlich S, Balghouthi M, Khamliche T, Doyle TB, Dimassi W, et al. Study of thermal conductivity of synthesized Al2O3-water nanofluid by pulsed laser ablation in liquid. Journal of Molecular Liquids. 2020;304:112694.##
[4] Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab.(ANL), Argonne, IL (United States); 1995.##
[5] Choi S, Zhang ZG, Yu W, Lockwood F, Grulke E. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied physics letters. 2001;79(14):2252-4.##
[6] Wang Q, Gui N, Huang X, Yang X, Tu J, Jiang S. The effect of temperature and cascade collision on thermal conductivity of 3C-SiC: A molecular dynamics study. International Journal of Heat and Mass Transfer. 2021;180:121822.##
[7] Li Z, Asadi S, Karimipour A, Abdollahi A, Tlili I. Experimental study of temperature and mass fraction effects on thermal conductivity and dynamic viscosity of SiO2-oleic acid/liquid paraffin nanofluid. International Communications in Heat and Mass Transfer. 2020;110:104436.##
[8] Almanassra IW, Manasrah AD, Al-Mubaiyedh UA, Al-Ansari T, Malaibari ZO, Atieh MA. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. Journal of Molecular Liquids. 2020;304:111025.##
[9] Ma M, Zhai Y, Yao P, Li Y, Wang H. Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids. Powder Technology. 2021;379:373-83.##
[10] Kazemi I, Sefid M, Afrand M. Improving the thermal conductivity of water by adding mono & hybrid nano-additives containing graphene and silica: A comparative experimental study. International Communications in Heat and Mass Transfer. 2020;116:104648.##
[11] Boroomandpour A, Toghraie D, Hashemian M. A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs-titania-zinc oxide/water-ethylene glycol (80: 20) as well as binary and mono nanofluids. Synthetic Metals. 2020;268:116501.##
[12] Moradi A, Zareh M, Afrand M, Khayat M. Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70-30)/EG-water hybrid nano-fluid. Powder Technology. 2020;362:578-85.##
[13] Wanatasanapan VV, Abdullah M, Gunnasegaran P. Effect of TiO2-Al2O3 nanoparticle mixing ratio on the thermal conductivity, rheological properties, and dynamic viscosity of water-based hybrid nanofluid. Journal of Materials Research and Technology. 2020;9(6):13781-92.##
[14] Mane NS, Hemadri V. Experimental investigation of stability, properties and thermo-rheological behaviour of water-based hybrid CuO and Fe3O4 nanofluids. International Journal of Thermophysics. 2022;43(1):1-22.##
[15] Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Experimental Heat Transfer. 2006;19(3):181-91.##
[16] Vărdaru A, Huminic G, Huminic A, Fleacă C, Dumitrache F, Morjan I. Synthesis, characterization and thermal conductivity of water based graphene oxide–silicon hybrid nanofluids: An experimental approach. Alexandria Engineering Journal. 2022;61(12):12111-22.##
[17] Jahanshahi M, Hosseinizadeh S, Alipanah M, Dehghani A, Vakilinejad G. Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid. International communications in heat and mass transfer. 2010;37(6):687-94.##
[18] Chereches M, Vardaru A, Huminic G, Chereches EI, Minea AA, Huminic A. Thermal conductivity of stabilized PEG 400 based nanofluids: An experimental approach. International Communications in Heat and Mass Transfer. 2022;130:105798.##
[19] Xie H, Yu W, Chen W. MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. Journal of Experimental Nanoscience. 2010;5(5):463-72.##
[20] Zhu BJ, Zhao WL, Li DD, Li JK, editors. Effect of volume fraction and temperature on thermal conductivity of SiO2 nanofluids. Advanced Materials Research; 2011: Trans Tech Publ.##
[21] Zhang S, Li Y, Xu Z, Liu C, Liu Z, Ge Z, et al. Experimental investigation and intelligent modeling of thermal conductivity of R141b based nanorefrigerants containing metallic oxide nanoparticles. Powder Technology. 2022;395:850-71.##
[22] Pang C, Jung J-Y, Lee JW, Kang YT. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles. International Journal of Heat and Mass Transfer. 2012;55(21-22):5597-602.##
[23] Darvanjooghi MHK, Esfahany MN. Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid. International Communications in Heat and Mass Transfer. 2016;77:148-54.##
[24] Hamid KA, Azmi W, Nabil M, Mamat R, Sharma K. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. International Journal of Heat and Mass Transfer. 2018;116:1143-52.##
[25] Bindu M, Herbert GJ. Experimental investigation of stability, optical property and thermal conductivity of water based MWCNT-Al2O3-ZnO mono, binary and ternary nanofluid. Synthetic Metals. 2022;287:117058.##
[26] Kakavandi A, Akbari M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. International Journal of Heat and Mass Transfer. 2018;124:742-51.##
[27] Nabil M, Azmi W, Hamid KA, Mamat R, Hagos FY. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture. International Communications in Heat and Mass Transfer. 2017;86:181-9.##
[28] Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Applied Thermal Engineering. 2017;110:1111-9.##
[29] Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. Journal of Thermal Analysis and Calorimetry. 2017;129(2):859-67.##
[30] Esfe MH, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. International Communications in Heat and Mass Transfer. 2015;67:173-5.##
[31] Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30: 70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. Journal of Thermal Analysis and Calorimetry. 2018;131(2):1437-47.##
[32] Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E: Low-dimensional Systems and Nanostructures. 2017;85:90-6.##
[33] Rostami S, Kalbasi R, Talebkeikhah M, Goldanlou AS. Improving the thermal conductivity of ethylene glycol by addition of hybrid nano-materials containing multi-walled carbon nanotubes and titanium dioxide: applicable for cooling and heating. Journal of Thermal Analysis and Calorimetry. 2021;143(2):1701-12.##
[34] Li L, Zhai Y, Jin Y, Wang J, Wang H, Ma M. Stability, thermal performance and artificial neural network modeling of viscosity and thermal conductivity of Al2O3-ethylene glycol nanofluids. Powder Technology. 2020;363:360-8.##
[35] Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technology. 2018;338:806-18.##
[36] ASHRAE A. Handbook—Fundamentals (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 2017;2017.##
دوره 18، شماره 3 - شماره پیاپی 69
شماره پیاپی 69، فصلنامه پاییز
مهر 1401
صفحه 141-154
  • تاریخ دریافت: 01 خرداد 1401
  • تاریخ بازنگری: 01 مرداد 1401
  • تاریخ پذیرش: 24 مرداد 1401
  • تاریخ انتشار: 01 مهر 1401