[1] Okada KT MA, Akihiro A, Hirokazu K, Seiji B, Tatsushi K, Jun T. Fracture strength testing of crowns made of CAD/CAM composite resins. Journal of Prosthodontic Research. 2018;62(3):287-92.##
[2] Yamaguchi Kani R KK, Tsuji M, Inoue S, Lee Cand Imazato S. Fatigue behavior and crack initiation of CAD/CAM resin composite molar crowns. Dental Materials. 2018;34(10):1578-84.##
[3] Fasbinder DJ DJ, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns. The Journal of the American Dental Association. 2010;141:10-4.##
[4] Lawson NC BR, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dental Materials. 2016;32(11):275-83.##
[5] Khaledi AA FM, Akhlaghian M, Pardis S, Mir N. Evaluation of the marginal fit of metal copings fabricated by using 3 different CAD-CAM techniques: Milling, stereolithography, and 3D wax printer. The Journal of prosthetic dentistry. 2019;124(1):81-6.##
[6] Ioannidis A BD, Hämmerle CHF, Hüsler J, Birrer O, Mühlemann S. Load-bearing capacity of CAD/CAM 3D-printed zirconia, CAD/CAM milled zirconia, and heat-pressed lithium disilicate ultra-thin occlusal veneers on molars. Dental Materials. 2020;36(4):109-16.##
[7] Bindl A LH, Mörmann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dental Materials. 2006;22(1):29-36.##
[8] Lohbauer U PA, Greil P. Lifetime prediction of CAD/CAM dental ceramics. Journal of Biomedical Materials Research. 2002;63(6):780-5.##
[9] Lopes FC P-DR, Campi LB, Roselino RF, Gomes ÉA, Canevese, VA, de Sousa-Neto MD. Surface topography and bond strength of CAD–CAM milled zirconia ceramic luted onto human dentin: effect of surface treatments before and after sintering. Applied Adhesion Science. 2018;6(1):1-11.##
[10] Sanches IB MT, Kappler R, Oliveira MV, Carvalho AO, Lima EMCX. Marginal adaptation of CAD-CAM and heat-pressed lithium disilicate crowns: A systematic review and meta-analysis. The Journal of Prosthetic Dentistry. 2021.##
[11] Horti NC KM, Nataraji SK, Wari MN, Inamdar SR. Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: effect of calcination temperature. Nano Express. 2020;1(1).##
[12] Meriam JL KL. Engineering Mechanics Dynamics. New Jersey: Wiley & Sons; 2013.##
[13] Jakovac M KT, Radatović B, Bafti A, Skoko Ž, Pavić L, Žic M. Impact of Sandblasting on Morphology, Structure and Conductivity of Zirconia Dental Ceramics Material. Materials. 2021;14(11).##
[14] Cadi-Essadek A RA, de Leeuw NH. Density functional theory study of the interaction of H2O, CO2 and CO with the ZrO2 (111), Ni/ZrO2 (111), YSZ (111) and Ni/YSZ (111) surfaces. Surface Science. 2016;653:153-62.##
[15] Hutama AS ML, Chou CP, Irle S, Hofer TS. Development of Density-Functional Tight-Binding Parameters for the Molecular Dynamics Simulation of Zirconia, Yttria, and Yttria-Stabilized Zirconia. ACS omega. 2021;6(31):20530-48.##
[16] Bahamirian M H, SMM, Farvizi M, Rahimipour MR, Keyvani A. Phase stability of ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3 compound at 1100° C and 1300° C for advanced TBC applications. Ceramics International. 2019;45(6):7344-50.##
[17] Gao P LZ, Wang X, Zhou T, Xie J, Li S, Shen W. Fabrication of a Micro-Lens Array Mold by Micro Ball End-Milling and Its Hot Embossing. Micromechanis. 2018;9(96):1-12.##
[18] Azmi AI LJ, Bhattacharyya D. Machinability study of glass fibre-reinforced polymer composites during end milling. International Journal of Advance Manufacturing Technology. 2013;64:247–61.##
[19] Liu J YX. Effect of Milling Parameters on Surface Roughness for High-speed Milling of Pre-sintering Zirconia. Advanced Materials Research. 2014;988:253-6.##