طراحی کنترل‌کننده پیش بین تعمیم یافته با ساختار رگولاتور خود تنظیم برای جلوگیری از اثر اشباع سرعت عملگر

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 نویسنده مسئول: دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

سیستم های فیزیکی اکثرا شامل قیود و محدودیت هایی هستند و اشباع سرعت عملگر یکی از این محدودیت ها است که تاثیرات نامطلوبی در سیستم کنترل پرواز دارد و باعث افزایش پاسخ نوسانی و در نتیجه ناپایداری سیستم می شود. اشباع سرعت عملگر از دلایل اصلی نوسانات القایی خلبان می باشد. در این مقاله با پیشنهاد یک الگوریتم کنترل پیش بین با ساختار دو درجه آزادی از وقوع اثرات مخرب اشباع سرعت عملگر جلوگیری شده است. همچنین با بدست آوردن موقعیت نقطه شروع حلقه باز شدن سیستم پرواز و فرکانسی که محدودیت سرعت عملگر برای اولین بار فعال می شود به خوبی اثرات اشباع سرعت عملگر پیش بینی شده است. سپس با معرفی یک روش تحلیلی شبیه به یکی از روش های مرسوم کنترل مقاوم معروف به روش شکل دهی حلقه به تنظیم پارامترهای کنترل کننده پیش بین تعمیم یافته پرداخته و پایداری و قوام سیستم حلقه بسته در برابر عدم قطعیت پارامترهای کنترل کننده بررسی شده است. در این روش با بدست آوردن الگوهای مقاوم سعی بر شکل دهی آن به گونه ای شده است که اغتشاشات و نویز در یک بازه فرکانسی تضعیف شوند. همچنین با استفاده از یک سوئیچ نحوه عملکرد کنترل کننده و خلبان نشان داده شده است. در نهایت کنترل کننده طراحی شده با کنترل کننده تناسبی-انتگرالی-مشتقی (PID) که در صنعت مرسوم است مقایسه شده و برتری های آن نشان داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a Generalized Predictive Control with Self-Tuning Regulator Structure to Prevent the Effect of Actuator Rate Saturation

نویسندگان [English]

  • Pouya Rezaei 1
  • Alireza Khosravi 2
1 Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran
2 Corresponding author: Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran
چکیده [English]

Physical systems often contain constraints and limitations. Actuator rate saturation is one of these limitations that has adverse effects on the flight control system which increases the oscillating response and thus the instability of the system. Actuator rate saturation is one of the main reasons for pilot-induced oscillations (PIOs). This paper proposes a model predictive control algorithm with two degrees of freedom structure to prevent the destructive effects of actuator rate saturation on the flight control system. Also, by obtaining starting point of the opening loop position in the flight system and the frequency at which the actuator rate saturation is activated for the first time, the saturation effects are well predicted. Then, by introducing an analytical method similar to one of the conventional methods of robust control known as loop shaping method, proposed model predictive controller parameters are adjusted and the stability and robustness of the closed-loop system against the uncertainty of the controller parameters are investigated. In this method, by obtaining robust patterns, an attempt has been made to shape it in such a way that disturbances and noise are suppressed in a frequency range. It also shows how the controller and pilot work by using a switch. Finally, the designed controller is compared with the proportional-integral-derivative controller (PID) that is common in the industry and its advantages are shown.

کلیدواژه‌ها [English]

  • Model Predictive Control
  • Actuator Rate Saturation
  • Robust Control
  • Describing Function

Smiley face

[1] Duda H. Prediction of pilot-in-the-loop oscillations due to rate saturation. Journal of Guidance, Control, and Dynamics. 1997;20(3):581-7.##
[2] Perng J-W. Application of parameter plane method to pilot-induced oscillations. Aerospace science and technology. 2012;23(1):140-5.##
[3] Tran AT, Sakamoto N, Kikuchi Y, Mori K. Pilot induced oscillation suppression controller design via nonlinear optimal output regulation method. Aerospace Science and Technology. 2017;68:278-86.##
[4] Park S. Deflection limit in open-loop onset-point pilot-in-the-loop oscillation analysis. Journal of Guidance, Control, and Dynamics. 2014;37(2):692-5.##
[5] Duda H. Flight control system design considering rate saturation. Aerospace science and technology. 1998;2(4):265-75.##
[6] Wang C, Santone M, Cao C. Pilot-induced oscillation suppression by using L 1 adaptive control. Journal of Control Science and Engineering. 2012;2012:2.##
[7] Tohidi SS, Yildiz Y, Kolmanovsky I, editors. Pilot induced oscillation mitigation for unmanned aircraft systems: An adaptive control allocation approach. 2018 IEEE Conference on Control Technology and Applications (CCTA); 2018: IEEE.##
[8] Jones M, Barnett M, editors. Analysis of Rotorcraft Pilot-Induced Oscillations Triggered by Active Inceptor Failures. AIAA Scitech 2019 Forum; 2019.##
[9] Tarbouriech S, Queinnec I, Biannic J-M, Prieur C. Pilot-Induced-Oscillations alleviation through anti-windup based approach.  Space Engineering: Springer; 2016. p. 401-23.##
[10] Queinnec I, Tarbouriech S, Biannic J-M, Prieur C. Anti-Windup Algorithms for Pilot-Induced-Oscillation Alleviation. 2017.##
[11] Andrievsky B, Kuznetsov N, Leonov G. Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems. Journal of Computer and Systems Sciences International. 2017;56(3):455-70.##
[12] Brieger O, Kerr M, Leißling D, Postlethwaite I, Sofrony J, Turner M. Flight testing of a rate saturation compensation scheme on the ATTAS aircraft. Aerospace Science and Technology. 2009;13(2-3):92-104.##
[13] Sofrony J, Turner MC, O'Brien RT, editors. Simple Globally Stabilising Anti-Windup Designs for Systems with Rate-Limits. 2018 UKACC 12th International Conference on Control (CONTROL); 2018: IEEE.##
[14] Yuan J, Chen Y, Fei S. Analysis of actuator rate limit effects on first-order plus time-delay systems under fractional-order proportional-integral control. IFAC-PapersOnLine. 2018;51(4):37-42.##
[15] Yoon YE, Johnson EN, editors. Analysis of Limit-Cycle Oscillation in Control Systems with Piecewise Nonlinearities. AIAA Scitech 2019 Forum; 2019.##
[16] Galuppini G, Magni L, Raimondo DM. Model predictive control of systems with deadzone and saturation. Control Engineering Practice. 2018;78:56-64.##
[17] Yayla M, Kutay AT, editors. Adaptive model predictive control of uncertain systems with input constraints. AIAA Guidance, Navigation, and Control Conference; 2017.##
[18] Zaychik K, Miller T, editors. Introspective Control Systems: Fast Model Predictive Control with Explicit Optimization Search, Nonlinear Models, and On-line Learning. AIAA Scitech 2019 Forum; 2019.##
[19] Kassaeiyan P, Tarvirdizadeh B, Alipour K. Control of tractor-trailer wheeled robots considering self-collision effect and actuator saturation limitations. Mechanical Systems and Signal Processing. 2019;127:388-411.##
[20] Peng H, Li F, Zhang S, Chen B. A novel fast model predictive control with actuator saturation for large-scale structures. Computers & Structures. 2017;187:35-49.##
[21] Liang X-h, Yamada K, Sakamoto N, Jikuya I. Model predictive controller design to suppress rate-limiter-based pilot-induced oscillations. Transactions of the Japan Society for Aeronautical and Space Sciences. 2007;49(166):239-45.##
[22] Liang XH, Wang T, editors. Research of MPC Method on Preventing PIOs and Comparison with other Methods. Applied Mechanics and Materials; 2014: Trans Tech Publ.##
[23] Wenqian T, Efremov A, Xiangju Q. A criterion based on closed-loop pilot-aircraft systems for predicting flying qualities. Chinese Journal of Aeronautics. 2010;23(5):511-7.##
[24] Clarke DW, Mohtadi C, Tuffs P. Generalized predictive control—Part I. The basic algorithm. Automatica. 1987;23(2):137-48.##
[25] Camacho EF, Alba CB. Model predictive control: Springer science & business media; 2013.##
[26] YOON T-W, Clarke DW. Receding-horizon predictive control with exponential weighting. International journal of systems science. 1993;24(9):1745-57.##
[27] Hamidi Z, Ouzahra M, Elazzouzi A. Strong Stabilization of Distributed Bilinear Systems with Time Delay. Journal of Dynamical and Control Systems. 2020;26(2):243-54.##
[28] Naeijian M, Khosravi A, editors. Stability Analysis of Model Reference Adaptive Control with the New Theorem of Stability. 2020 28th Iranian Conference on Electrical Engineering (ICEE); 2020: IEEE.##
[29] Bijani V, Khosravi A. Robust PID controller design based on H∞ theory and a novel constrained artificial bee colony algorithm. Transactions of the Institute of Measurement and Control. 2018;40(1):202-9.##
[30] Landau I. The RST digital controller design and applications. Control Engineering Practice. 1998;6(2):155-65.##
 
دوره 18، شماره 2 - شماره پیاپی 68
شماره پیاپی 68، فصلنامه تابستان
مرداد 1401
صفحه 79-96
  • تاریخ دریافت: 01 آذر 1400
  • تاریخ بازنگری: 12 اسفند 1400
  • تاریخ پذیرش: 14 اسفند 1400
  • تاریخ انتشار: 01 مرداد 1401