کنترل آرایش گروهی ربات‌های پرنده به روش کنترل پیش‌بین مقید ضمن ره‌گیری هدف متحرک باوجود موانع

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 نویسنده مسئول: استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 دانشیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در این مقاله، با بهره­گیری از کنترل‌کننده پیش­بین مقید، ره­گیری یک هدف متحرک توسط گروهی از ربات­های پرنده ضمن کنترل آرایش گروه ارائه‌شده است. حفظ و کنترل آرایش گروه بر مبنای کنترل موقعیت با فرض معماری غیرمتمرکز و ساختار ارتباطی رهبر-پیرو بین عوامل انجام‌گرفته است. ره­گیری هدف توسط رهبر گروه انجام می‌پذیرد و پیروها وظیفه ره­گیری رهبر گروه را بر عهده دارند. رهبر گروه، موقعیت فعلی و تخمین موقعیت خود در گام‌های بعدی را دائماً برای پیروها ارسال می‌کند تا با استفاده از آن، موقعیت مطلوب فعلی و لحظات بعدی را محاسبه نمایند. در ادامه، بازنویسی قیود مسئله از قبیل تضمین حفظ فاصله و عدم برخورد پیروها با رهبر گروه و محدودیت‌های ورودی‌ها و تغییرات آن‌ها بر روی تمام اعضای گروه و نیز ارائه یک روش هندسی ابتکاری برای عبور از موانع و اعمال سیستماتیک همگی آن‌ها در فرآیند کنترل، انجام گردیده است. شبیه‌سازی‌های انجام‌شده برای یک گروه پنج‌تایی از ربات‌های پرنده که ضمن حفظ آرایش گروه به دنبال ره‌گیری یک هدف متحرک زمینی هستند، ارائه‌شده است. نتایج نشان می‌دهد کنترل‌کننده نسبت به اغتشاشات موجود در مسیر حرکت گروه مقاومت خوبی داشته و ره‌گیری گروهی به نحو مطلوبی انجام می‌گیرد. پیش‌بینی مسیر حرکت هدف متحرک و استفاده از آن در طراحی کنترل‌کننده پیش‌بین نیز باعث بهبود و هموار‌تر شدن مسیر حرکت گروه می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Formation Control of Flying Robots Using Constrained Model Predictive Control While Tracking of Moving Target in Presence of Obstacles

نویسندگان [English]

  • Ahmad Nasiri 1
  • Abdorreza Kashaninia 2
  • Ahmad Reza Vali 3
1 Ph.D. Student, Faculty of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran
2 Corresponding author: Assistant Professor, Faculty of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran
3 Associate Professor, Faculty of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran
چکیده [English]

In this article, using the constrained predictive controller, the tracking of a moving target by a group of flying robots while controlling the group arrangement is presented. The maintenance and control of the group arrangement is based on position control with the assumption of decentralized architecture and leader-follower communication structure between the agents. Target tracking is done by the group leader and the followers are responsible for tracking the group leader. The leader of the group constantly sends the current position and the estimate of his position in the next steps to the followers to use it to calculate the optimal current position and the next moments. In the following, rewriting the constraints of the problem, such as ensuring that the distance is maintained and that the followers do not collide with the group leader, and the limitations of inputs and their changes on all members of the group, as well as providing an innovative geometric method for crossing obstacles and systematically applying all of them in the control process. has been Simulations are presented for a group of five flying robots that seek to intercept a moving ground target while maintaining the formation of the group. The results show that the controller has a good resistance to the disturbances in the group's movement path and the group interception is carried out in a favorable way. Predicting the movement path of the moving target and using it in the design of the predictive controller also improves and smooths the movement path of the group.

کلیدواژه‌ها [English]

  • Formation control
  • Constrained model predictive control
  • Decentralized control
  • Moving target tracking

Smiley face

[1] Welch RV, Edmonds GO. Applying robotics to HAZMAT. Proceedings of the 4th National Technology Transfer Conference and Exposition-In NASA Technology. 1994.##
[2] Bernard M, Kondak K, Maza I, Ollero A. Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics. 2011;28(6):914-31.##
[3] Maza I, Caballero F, Capitán J, Martínez-de-Dios JR, Ollero A. Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of intelligent & robotic systems. 2011;61(1):563-85.##
[4] Chmaj G, Selvaraj H. Distributed processing applications for UAV/drones: a survey.  Progress in Systems Engineering: Springer; 2015. p. 449-54.##
[5] Sujit P, Kingston D, Beard R, editors. Cooperative forest fire monitoring using multiple UAVs. Decision and Control, 2007 46th IEEE Conference on; 2007: IEEE.##
[6] Ahmadzadeh A, Jadbabaie A, Kumar V, Pappas GJ, editors. Multi-UAV cooperative surveillance with spatio-temporal specifications. Decision and Control, 2006 45th IEEE Conference on; 2006: IEEE.##
[7] Schmale Iii DG, Dingus BR, Reinholtz C. Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields. Journal of Field Robotics. 2008;25(3):133-47.##
[8] Monostori L, Váncza J, Kumara SR. Agent-based systems for manufacturing. CIRP Annals-Manufacturing Technology. 2006;55(2):697-720.##
[9] Jiang C, Sheng Z. Case-based reinforcement learning for dynamic inventory control in a multi-agent supply-chain system. Expert Systems with Applications. 2009;36(3):6520-6.##
[10] Teodorovic D. Transport modeling by multi-agent systems: a swarm intelligence approach. Transportation planning and Technology. 2003;26(4):289-312.##
[11] Kaiser D, Lesch V, Rothe J, Strohmeier M, Spieß F, Krupitzer C, et al. Towards Self-Aware Multirotor Formations. Computers. 2020;9(1):7.##
[12] Karras GC, Bechlioulis CP, Fourlas GK, Kyriakopoulos KJ, editors. Formation Control and Target Interception for Multiple Multi-rotor Aerial Vehicles. 2020 International Conference on Unmanned Aircraft Systems (ICUAS); 2020: IEEE.##
[13] Dubois L, Suzuki SJAR. Formation control of multiple quadcopters using model predictive control. 2018:1-10.##
[14] Reynolds CW, editor Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH computer graphics; 1987: ACM.##
[15] Liu Y, Montenbruck JM, Zelazo D, Odelga M, Rajappa S, Bülthoff HH, et al. A distributed control approach to formation balancing and maneuvering of multiple multirotor UAVs. IEEE Transactions on Robotics. 2018;34(4):870-82.##
[16] Yingxun W, ZHANG T, Zhihao C, Jiang Z, Kun W. Multi-UAV coordination control by chaotic grey wolf optimization based distributed MPC with event-triggered strategy. Chinese Journal of Aeronautics. 2020;33(11):2877-97.##
[17] Saska M, Hert D, Baca T, Kratky V, Nascimento T. Formation control of unmanned micro aerial vehicles for straitened environments. Autonomous Robots. 2020:1-18.##
[18] Bassolillo SR, D’Amato E, Notaro I, Blasi L, Mattei M. Decentralized mesh-based model predictive control for swarms of UAVs. Sensors. 2020;20(15):4324.##
[19] Kim J, Gadsden SA, Wilkerson SAJCJoE, Engineering C. A comprehensive survey of control strategies for autonomous quadrotors. 2019;43(1):3-16.##
[20] Balch T, Arkin RCJItor, automation. Behavior-based formation control for multirobot teams. 1998;14(6):926-39.##
[21] Fredslund J, Mataric MJJItor, automation. A general algorithm for robot formations using local sensing and minimal communication. 2002;18(5):837-46.##
[22] Lawton JR, Beard RW, Young BJJItor, automation. A decentralized approach to formation maneuvers. 2003;19(6):933-41.##
[23] Pugh J, Raemy X, Favre C, Falconi R, Martinoli AJIAToM. A fast onboard relative positioning module for multirobot systems. 2009;14(2):151-62.##
[24] Falconi R, Gowal S, Martinoli A, editors. Graph based distributed control of non-holonomic vehicles endowed with local positioning information engaged in escorting missions. Robotics and Automation (ICRA), 2010 IEEE International Conference on; 2010: IEEE.##
[25] Gowal SA. A framework for graph-based distributed rendezvous of nonholonomic multi-robot systems. 2013.##
[26] Manikonda V, Arambel P, Gopinathan M, Mehra R, Hadaegh F, editors. A model predictive control-based approach for spacecraft formation keeping and attitude control. American Control Conference, 1999 Proceedings of the 1999; 1999: IEEE.##
[27] Xuan-Mung N, Hong SK. Robust adaptive formation control of quadcopters based on a leader–follower approach. International Journal of Advanced Robotic Systems. 2019;16(4):1729881419862733.##
[28] Santana LV, Brandão AS, Sarcinelli-Filho MJJoI, Systems R. Navigation and cooperative control using the ar. drone quadrotor. 2016;84(1):327-50.##
[29] Lewis FL, Zhang H, Hengster-Movric K, Das A. Cooperative control of multi-agent systems: optimal and adaptive design approaches: Springer Science & Business Media; 2013.##
[30] Ponda SS, Johnson LB, Geramifard A, How JP. Cooperative mission planning for multi-uav teams.  Handbook of Unmanned Aerial Vehicles: Springer; 2015. p. 1447-90.##
[31] Wang L. Model predictive control system design and implementation using MATLAB®: Springer Science & Business Media; 2009.##
[32] Dubay S, Pan Y-J, editors. Distributed MPC based collision avoidance approach for consensus of multiple quadcopters. 2018 IEEE 14th International Conference on Control and Automation (ICCA); 2018: IEEE.##
[33] Viana IB, dos Santos DA, Góes LCS. Formation control of multirotor aerial vehicles using decentralized MPC. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018;40(6):1-12.##
دوره 18، شماره 4 - شماره پیاپی 70
شماره پیاپی 70، فصلنامه زمستان
دی 1401
صفحه 29-47
  • تاریخ دریافت: 21 تیر 1401
  • تاریخ بازنگری: 24 مرداد 1401
  • تاریخ پذیرش: 06 مهر 1401
  • تاریخ انتشار: 01 آبان 1401