تخصیص کنترل بر پایه رویکرد فازی برای فاز نشست یک هواپیمای خاص

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 نویسنده مسئول: استادیار، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

2 کارشناس ارشد، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

3 استادیار، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

چکیده

در این مقاله هدف اصلی، به‌کارگیری رویکرد تخصیص ‌کنترل، در نشست هواپیمای F/A-18 می‌باشد. برای این کار، از مدل غیرخطی سه درجه آزادی پرنده و برای طراحی سیستم کنترل پرواز طولی، از رویکرد تخصیص ‌کنترل هوشمند مبتنی بر منطق فازی استفاده می‌شود. عملگر‌هایی که در فرآیند نشست هواپیما مشارکت دارند، زاویه بالابر و زاویه کنترل بردار رانش موتور هواپیما می‌باشند. با تخصیص سیگنال‌های کنترلی بین دو عملگر مزبور، هواپیما فرآیند کاهش ارتفاع را آغاز و درنهایت به سطح زمین می‌رسد. برای بهبود کارایی کنترل‌کننده فازی، کاهش تلاش کنترلی و بالا بردن میزان دقت و کیفیت فرود هواپیما، از الگوریتم بهینه‌سازی ژنتیک مبتنی بر روش NSGA-II استفاده می‌شود و پارامترهای کنترل‌کننده فازی اصلاح می‌گردند. نتایج به‌دست‌آمده از شبیه‌سازی، نشان می‌دهد که رویکرد تخصیص کنترل پیشنهادی، از توانایی بالایی برای کنترل و پایداری هواپیما در فرآیند فرود برخوردار است. هم‌چنین متغیرهای خروجی‌، به مقدار مطلوبی همگرا می‌گردند و هواپیما با دقت مناسب و تلاش کنترلی کم، فرآیند نشست را به انجام می‌رساند.

تازه های تحقیق

  • به‌کارگیری رویکرد تخصیص ‌کنترل، در نشست هواپیمای F/A-18.
  • رویکرد تخصیص ‌کنترل هوشمند مبتنی بر منطق فازی است.
  • از الگوریتم ژنتیک مبتنی بر روش NSGA-II استفاده می‌شود و پارامترهای کنترل‌کننده فازی اصلاح می‌گردند.

کلیدواژه‌ها


عنوان مقاله [English]

Control Allocation Based on Fuzzy Approach for Landing Phase of Specific Aircraft

نویسندگان [English]

  • Hojat Taei 1
  • Saba Nikseresht 2
  • Alireza Babaei 3
1 Corresponding author: Assistant Professor, Faculty of Mechanical Engineering, Malek-e-Ashtar Unversity of Technology, Isfahan, Iran
2 M.Sc. Student, Faculty of Mechanical Engineering, Malek-e-Ashtar Unversity of Technology, Isfahan, Iran
3 Assistant Professor, Faculty of Mechanical Engineering, Malek-e-Ashtar Unversity of Technology, Isfahan, Iran
چکیده [English]

The main objective of this article is to apply the control allocation approach for the landing phase of the F/A-18 aircraft. For this purpose, the non-linear three-degree-of-freedom model of the aircraft is used, and the intelligent control allocation approach, based on fuzzy logic, is utilized to design the longitudinal flight control system. The actuators involved in the aircraft landing process are the elevator angle and the thrust vector control angle of the aircraft engine. By allocating control signals between the two mentioned actuators, the plane starts the process of lowering the height and finally reaches the ground level. To improve the efficiency of the fuzzy controller, reduce the control effort and increase the accuracy and quality of the landing, the genetic algorithm based on the NSGA-II method is used and the variables of the fuzzy controller are modified. The results obtained from the simulation show that the proposed control allocation approach has a high ability to control and stabilize the aircraft in the landing process. Also, the output variables converge to a desired value and the aircraft completes the landing process with proper accuracy and low control effort.

کلیدواژه‌ها [English]

  • Automatic Landing of Aircraft
  • Control Allocation
  • Fuzzy Logic
  • Multiobjective Optimization
  • Genetic Algorithm

Smiley face

[1] Johansen TA, Fossen TI. Control allocation—A survey. Automatica. 2013;49(5):1087-103.##
[2] Alwi H, Edwards C. Fault tolerant control using sliding modes with on-line control allocation. Automatica. 2008;44(7):1859-66.##
[3] A Babaei AR, Mortazavi M, Moradi MH. Classical and fuzzy-genetic autopilot design for unmanned aerial vehicles. Applied Soft Computing. 2011;11(1):365-72.##
[4] Gai W, Liu J, Zhang J, Li Y. A new closed-loop control allocation method with application to direct force control. International Journal of Control, Automation and Systems. 2018;16(3):1355-66.##
[5] Liu Y, Gao Z, Shang C. Control allocation for an over-actuated aircraft based on within-visual-range air combat agility. IEEE Access. 2018 Mar 12;6:14668-75.##
[6] Bian Q, Nener B, Wang X. An improved NSGA-II based control allocation optimisation for aircraft longitudinal automatic landing system. International Journal of Control. 2019 Apr 3;92(4):705-16.##
[7] Tohidy S, Sedigh AK. Fault tolerant fuzzy control allocation for overactuated systems. In2013 13th Iranian Conference on Fuzzy Systems (IFSC) 2013: 1-5.##
[8] Tohidi SS, Yildiz Y, Kolmanovsky I. Adaptive control allocation for over-actuated systems with actuator saturation. IFAc-PapersOnLine. 2017;50(1):5492-7.##
[9] Tohidi SS, Yildiz Y, Kolmanovsky I. Adaptive control allocation for constrained systems. Automatica. 2020;121:109161.##
[10] Sadien E, Roos C, Birouche A, Carton M, Grimault C, Romana LE, Basset M. A new control allocation algorithm to improve runway centerline tracking at landing. IFAC-PapersOnLine. 2019;52(12):520-5.##
[11] Wang Z, Zhang J, Yang L. Weighted pseudo-inverse based control allocation of heterogeneous redundant operating mechanisms for distributed propulsion configuration. Energy Procedia. 2019;158:1718-23.##
[12] Acheson MJ, Gregory IM, Cook J. Examination of unified control incorporating generalized control allocation. InAIAA Scitech 2021 Forum 2021 (p. 0999).##
[13] Wang Y, Xuyang TA, Zhihao CA, Zhao J. Optimal Prediction Control Allocation Algorithm for Tiltrotor Aircraft. InAdvances in Guidance, Navigation and Control 2022 (pp. 1183-1193). Springer, Singapore.##
[14] Kang J, Choi K. Development of an Artificial Neural Network Control Allocation Algorithm for Small Tailless Aircraft Based on Dynamic Allocation Method. International Journal of Aeronautical and Space Sciences. 2022;23(2):363-78.##
[15] Tabassum A, Bai H. Dynamic control allocation between onboard and delayed remote control for unmanned aircraft system detect-and-avoid. Aerospace Science and Technology. 2022;121:107323.##
[16] Cao J, Garrett Jr F, Hoffman E, Stalford H. Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model. 1990.##
[17] Buttrill CS, Arbuckle PD, Hoffler KD. Simulation model of a twin-tail, high performance airplane. 1992.##
[18] Napolitano MR. Aircraft Dynamics. Wiley; 2012.##
[19] Zadeh LA, Klir GJ, Yuan B. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. World Scientific; 1996.##
دوره 19، شماره 2 - شماره پیاپی 72
شماره پیاپی 72، فصلنامه تابستان
شهریور 1402
صفحه 1-10
  • تاریخ دریافت: 01 آبان 1401
  • تاریخ بازنگری: 16 آبان 1401
  • تاریخ پذیرش: 29 آذر 1401
  • تاریخ انتشار: 01 اردیبهشت 1402