فیلترهای مکمل بهبود یافته برای تخمین زوایای سمت و تراز در حرکت‌های شتاب‌دار

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 دانشجوی کارشناسی‌ارشد، مجتمع دانشگاهی برق، جنگال و مهندسی سایبرنتیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 نویسنده مسئول: دانشیار، مجتمع دانشگاهی برق، جنگال و مهندسی سایبرنتیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استادیار، پژوهشکده علوم و فناوری شمال، دانشگاه صنعتی مالک اشتر، مازندران، ایران

چکیده

در این مقاله روشی برای بهبود عملکرد فیلترهای مکمل در سامانه مرجع سمت و تراز برای تخمین وضعیت در حرکت‌های شتاب‌دار ارائه‌شده است. هرچند فیلترهای مکمل موجود Madgwick و Mahony از مزایایی از قبیل حجم محاسباتی کم، پایداری در شرایط دینامیکی مختلف، مؤثر بودن در نرخ نمونه‌برداری پایین و سادگی در روند تنظیم پارامترها برخوردار هستند؛ لیکن در شرایطی که وسیله متحرک در معرض شتاب‌های غیر جاذبه‌ای قرار می‌گیرد، عملکرد نامناسبی از خود نشان می‌دهند. الگوریتم پیشنهادی بر اساس روش راه‌گزینی بر مبنای آستانه طراحی‌شده است و با تنظیم بهره فیلترهای مکمل متناسب با اندازه شتاب خارجی، باعث بهبود تخمین زوایا می‌گردد. در ادامه الگوریتم پیشنهادی با فیلتر کالمن توسعه‌یافته و سه نسخه تطبیقی آن مقایسه شده است. نتایج شبیه‌سازی و ارزیابی روش پیشنهادی نشان‌دهنده دستیابی فیلترهای مکمل بهبودیافته به عملکرد بهتر در حرکت‌های شتاب‌دار نسبت به فیلترهای کالمن توسعه‌یافته تطبیقی در سامانه مرجع سمت و تراز است.

تازه های تحقیق

  • سامانه مرجع تراز و سمت
  • تخمین وضعیت در حرکت شتاب‌دار
  • فیلترهای مکمل بهبودیافته Madgwick و Mahony

کلیدواژه‌ها


Smiley face

[1] Cirillo A, Cirillo P, De Maria G, Natale C, Pirozzi S, Fourati H, et al. A comparison of multisensor attitude estimation algorithms. Multisensor Attitude Estimation: Fundamental Concepts Applications CRC Press: Boca Raton, FL, USA. 2016:529-40.##
[2] Madgwick S. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io University of Bristol. 2010;25:113-8.##
[3] Ludwig S, Burnham K, Jiménez A, Touma P. Comparison of attitude and heading reference systems using foot mounted MIMU sensor data: basic, Madgwick, and Mahony: SPIE; 2018.##
[4] Nowicki M, Wietrzykowski J, Skrzypczyński P, editors. Simplicity or flexibility? Complementary Filter vs. EKF for orientation estimation on mobile devices. 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF); 2015: IEEE.##
[5] Young AD, editor Comparison of orientation filter algorithms for realtime wireless inertial posture tracking. Sixth International Workshop on Wearable and Implantable Body Sensor Networks; 2009: IEEE.##
[6] Roh M-S, Kang B-SJIJoPE, Manufacturing. Dynamic accuracy improvement of a MEMS AHRS for small UAVs. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING. 2018;19(10):1457-66.##
[7] Yoo TS, Hong SK, Yoon HM, Park S. Gain-scheduled complementary filter design for a MEMS based attitude and heading reference system. Sensors. 2011;11(4):3816-30.##
[8] Li W, Wang J. Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems. THE JOURNAL OF NAVIGATION. 2013;66(1):99-113.##
[9] Kim J-M, Mok S-H, Leeghim H, Lee C-Y. Vibration-Robust Attitude and Heading Reference System Using Windowed Measurement Error Covariance. International Journal of Aeronautical Space Sciences. 2017;18(3):555-64.##
[10] Valenti RG, Dryanovski I, Xiao J. A linear Kalman filter for MARG orientation estimation using the algebraic quaternion algorithm. IEEE Transactions on Instrumentation Measurement. 2015;65(2):467-81.##
[11] Park S, Park J, Park CG. Adaptive Attitude Estimation for Low-Cost MEMS IMU Using Ellipsoidal Method. IEEE Transactions on Instrumentation Measurement. 2020;69(9):7082-91.##
[12] Sabet M, Mohammadi Daniali H, Fathi A, Alizadeh E. Design and experimental comparison of a new attitude estimation algorithm for accelerated rigid body. Journal of Control. 2019;12(4):35-46.##
[13] Yan Y, Cao Y, Zhao Z, Li D, editors. An Adaptive Extended Kalman Filter for Non-Gravitational Acceleration Elimination in AHRS. 2019 Chinese Automation Congress (CAC); 2019: IEEE.##
[14] Suh Y-S, Park S-K, Kang H-J, Ro Y-S. Attitude Estimation Adaptively Compensating External Acceleration. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing. 2006;49(1):172-9.##
[15] Nourmohammadi H, Keighobadi J. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system. Mechanical Systems Signal Processing. 2018;99:434-49.##
[16] Farrell J. Aided navigation: GPS with high rate sensors: McGraw-Hill, Inc.; 2008.##
[17] Bonnor N. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems–Second EditionPaul D. Groves Artech House, 2013, 776 pp ISBN-13: 978-1-60807-005-3. The Journal of Navigation. 2014;67(1):191-2.##
[18] Rafatnia S, Nourmohammadi H, Keighobadi J. Fuzzy-adaptive constrained data fusion algorithm for indirect centralized integrated SINS/GNSS navigation system. Gps Solutions. 2019;23(3):1-14.##
[19] Nourmohammadi H, Keighobadi J. Decentralized INS/GNSS system with MEMS-grade inertial sensors using QR-factorized CKF. IEEE Sensors Journal. 2017;17(11):3278-87.##
[20] Johnston CG. High Resolution Wavelet De-noising for MEMS-based Navigation Systems: Royal Military College of Canada (Canada); 2007.##
[21] Ludwig SA. Investigation of Orientation Estimation of Multiple IMUs. Unmanned Systems. 2021;9(04):283-91.##
[22] Gebre-Egziabher D, Hayward RC, Powell JD. A low-cost GPS/inertial attitude heading reference system (AHRS) for general aviation applications. InIEEE 1998 Position Location and Navigation Symposium (Cat. No. 98CH36153) 1996 Apr 20 (pp. 518-525). IEEE.##
[23] Rogers RM. Applied mathematics in integrated navigation systems: Aiaa; 2003.##
[24] Mahony R, Hamel T, Pflimlin J-M. Nonlinear complementary filters on the special orthogonal group. IEEE Transactions on automatic control. 2008;53(5):1203-18.##
[25] Madgwick SO, Harrison AJ, Vaidyanathan R, editors. Estimation of IMU and MARG orientation using a gradient descent algorithm. 2011 IEEE international conference on rehabilitation robotics; 2011: IEEE.##
[26] Fourati H. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter. IEEE Transactions on Instrumentation Measurement. 2014;64(1):221-9.##
[27] Lee JK, Park EJ, Robinovitch SN. Estimation of attitude and external acceleration using inertial sensor measurement during various dynamic conditions. IEEE transactions on instrumentation measurement. 2012;61(8):2262-73.##
[28] Zihajehzadeh S, Loh D, Lee TJ, Hoskinson R, Park EJ. A cascaded Kalman filter-based GPS/MEMS-IMU integration for sports applications. Measurement. 2015;73:200-10.##
[29] Harada T, Uchino H, Mori T, Sato T, editors. Portable absolute orientation estimation device with wireless network under accelerated situation. IEEE International Conference on Robotics and Automation, 2004 Proceedings ICRA'04 2004; 2004: IEEE.##
[30] Sabatini AM. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE transactions on Biomedical Engineering. 2006;53(7):1346-56.##
[31] Choukroun D, Bar-Itzhack IY, Oshman Y. Novel quaternion Kalman filter. IEEE Transactions on Aerospace Electronic Systems. 2006;42(1):174-90.##
[32] Makni A, Fourati H, Kibangou AY. Energy-aware adaptive attitude estimation under external acceleration for pedestrian navigation. IEEE/ASME Transactions On Mechatronics. 2015;21(3):1366-75.##
[33] Ghobadi M, Singla P, Esfahani ET. Robust attitude estimation from uncertain observations of inertial sensors using covariance inflated multiplicative extended Kalman filter. IEEE Transactions on Instrumentation Measurement. 2017;67(1):209-17.##
[34] Poulose A, Eyobu OS, Han DS. An indoor position-estimation algorithm using smartphone IMU sensor data. Ieee Access. 2019;7:11165-77.##
دوره 19، شماره 2 - شماره پیاپی 72
شماره پیاپی 72، فصلنامه تابستان
شهریور 1402
صفحه 131-143
  • تاریخ دریافت: 01 دی 1401
  • تاریخ بازنگری: 25 دی 1401
  • تاریخ پذیرش: 01 اسفند 1401
  • تاریخ انتشار: 01 اردیبهشت 1402