[1] Allen HG. Analysis and design of structural sandwich panels: the commonwealth and international library: structures and solid body mechanics division. Elsevier; 2013.##
[2] Nazari AR, Taheri F. On the pacifying influence of an elastomeric foam core on the failure mechanism of sandwich composites with various skin layups. International Journal of Crashworthiness. 2022 12:1-6.##
[3] Tagliavia G, Porfiri M, Gupta N. Influence of moisture absorption on flexural properties of syntactic foams. Composites Part B: Engineering. 2012 1;43(2):115-23.##
[4] Sadler RL, Sharpe M, Panduranga R, Shivakumar K. Water immersion effect on swelling and compression properties of Eco-Core, PVC foam and balsa wood. Composite Structures. 2009;90(3):330-6.##
[5] May-Pat A, Avilés F. Long term water uptake of a low density polyvinyl chloride foam and its effect on the foam microstructure and mechanical properties. Materials & Design. 2014;57:728-35.##
[6] Nazari AR, Kabir MZ, Hosseini-Toudeshky H. Investigation of elastomeric foam response applied as core for composite sandwich beams through progressive failure of the beams. Journal of Sandwich Structures & Materials. 2019;21(2):604-38.##
[7] Frostig Y, Baruch M. Bending of sandwich beam with transversely flexible core. AIIA journal 1990;28(3):523-31.##
[8] Frostig Y, Baruch M, Vilnay O, Sheinman I. High order theory for sandwich beam behavior with transversely flexible core. Journal of Engineering Mechanics. 1992;118(5):1026-43.##
[9] Steeves CA and Fleck NA. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design. International Journal of Mechanical Sciences. 2004;46:561–83.##
[10] Steeves CA and Fleck NA. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modelling. International Journal of Mechanical Sciences. 2004;46:585–608.##
[11] Tagarielli VL, Fleck NA, Deshpande VS. Collapse of clamped and simply supported composite sandwich beams in three-point bending. Composites Part B: Engineering. 2004;35:523–34.##
[12] Triantfillou TC and Gibson LJ. Failure mode maps for foam core sandwich beams. Materials Science and Engineering. 1987;95:37–53.##
[13] Mines RAW and Alias A. Numerical simulation of the progressive collapse of polymer composite sandwich beams under static loading. Composites Part A: Applied Science and Manufacturing. 2002;33:11–26.##
[14] Ahmadi E, Fesharaki JJ, Atrian A, Montazerolghaem H, Saberi S. Investigation of Penetration Behavior of Sandwich Structures with Fiber-metal Laminate Skins and Syntactic Foam Core. Fibers and Polymers. 2021;22(10):2846-60.##
[15] Liu C, Zhang YX, Ye L. High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core. International Journal Impact Engineering. 2017;100,139-53.##
[16] Abrate S. Impact Engineering of Composite Structures. Springer-Verlag, New York, 2011.##
[17] Iaccarino P, Langella A, Caprino GA. Simplified model to predict the tensile and shear stress–strain behaviour of fibre glass/aluminium laminates. Composites Science and Technology. 2007;67,1784.##
[18] Loganathan SB, Shivanand HK. Effect of core thickness and core density on low velocity impact behavior of sandwich panels with PU foam core. Journal of Minerals and Materials Characterization and Engineering. 2015;3(03):164.##
[19] Hou W, Zhu F, Lu G, Fang DN, Ballistic impact experiments of metallic sandwich panels with aluminium foam core. International Journal Impact Engineering. 2010;37, 1045.##
[20] Rolfe E, Kaboglu C, Quinn R, Hooper PA, Arora H, Dear JP. Underwater blast loading of partially submerged sandwich composite materials in relation to air blast loading response. Journal of Dynamic Behavior of Materials. 2018;4,359.##
[21] Mohammadkhani P, Jalali SS, Safarabadi M. Experimental and numerical investigation of Low-Velocity impact on steel wire reinforced foam Core/Composite skin sandwich panels. Composite Structures. 2021;256:112992.##
[22] Feng D, Aymerich F. Damage prediction in composite sandwich panels subjected to low-velocity impact. Composites Part A: Applied Science and Manufacturing. 2013;52:12-22.##
[23] Rahmani R, Rahimi G, Hosseini S. Flexural Behavior of Sandwich Structures Consisting of Corrugated Composite Core with Different Geometries. Iranian Journal of Polymer Science and Technology 2015;28(3): 187-75.##
[24] Zenkert D. Strength of sandwich beams with mid-plane debondings in the core. Composite Structures. 1990 Jan 1;15(4):279-99.##
[25] Zenkert D. Strength of Sandwich Beams with Interface Debondings, Composite Structures 1991;17:331-50.##
[26] Raghavan P, Ghosh S. A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding. Mechanics of Materials 2005;37:955–79.##
[27] Malekinejad Bahabadi H, Rahimi GH., Farrokhabadi A. Numerical and experimental investigation of skin/core debonding in composite sandwich structures with corrugated core under bending loading. Modares Mechanical Engineering 2016;16(6):52-62.##
[28] Floros IS, Tserpes KI, Löbel T. Mode-I, mode-II and mixed-mode I+II fracture behavior of composite bonded joints: Experimental characterization and numerical simulation. Compos. B. Eng. 2015;78(3):459-68.##
[29] Pirmohammadi N, Liaghat GH, Pol MH, Sabouri H. Analytical, experimental and numerical investigation of sandwich panels made of honeycomb core subjected projectile impact. Modares Mechanical Engineering, 2014;14(5):153-164.##
[30] Feli S, Namdari-Pour MH. An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact. Composites Part B: Engineering. 2012;43:2439–47.##
[31] Khondabi R, Khodarahmi H, Hosseini R, Shamami M. Experimental and numerical investigation on performance of sandwich panels using aluminum faces and polyurethane foam core with variable density against explosive loading. Iranian Journal of Mechanical Engineering. 2020;22(1):24-49.##
[32] Khondabi R, Khadarahmi H, Hosseini R, Shamami M. Experimental and numerical investigation into the effect of core density on the energy absorption of sandwich panels with aluminum face sheets and polyurethane foam core. Amirkabir Journal of Mechanical Engineering 2019;52(10):2839-58.##
[33] Zakizadeh AM, Refahi-Oskouei A, Hamzehlu R. Damages evaluation of low velocity impact on Glass/Polyester-foam sandwich panels using the acoustic technique., Journal of Science and Technology of Composites, 2019;6(2):319-29.##
[34] Davar A, Azarafza R, Faraii-Shoaa J. Experimental and numerical analysis of low-velocity impact on composite sandwich panels with grid stiffened core. Journal of Science and Technology of Composites, 2020;6(4), 615-26.##
[35] Jones LL, Wood RH. Yield-line analysis of slabs, American Elsevier Publishing, New York, 1967.##