[1] Sinmazçelik T, Avcu E, Bora MÖ, Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design. 2011;32(7):3671-85##.
[2] Salve A, Kulkarni R, Mache A. A review: Fiber metal laminates (FML’s)—Manufacturing, test methods and numerical modeling. International Journal of Engineering Technology and Sciences (IJETS). 2016;6(1):71-84##.
[3] Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research. 2006;9(3):247-56##.
[4] Villanueva GR, Cantwell W. The high velocity impact response of composite and FML-reinforced sandwich structures. Composites Science and Technology. 2004;64(1):35-54##.
[5] Khan R. Fiber bridging in composite laminates: A literature review. Composite Structures. 2019:111418##.
[6] Treacy MJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. nature. 1996;381(6584):678-80##.
[7] Androulidakis C, Tsoukleri G, Koutroumanis N, Gkikas G, Pappas P, Parthenios J, et al. Experimentally derived axial stress–strain relations for two-dimensional materials such as monolayer graphene. Carbon. 2015;81:322-8##.
[8] Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. science. 1997;277(5334):1971-5##.
[9] Fischer H. Polymer nanocomposites: from fundamental research to specific applications. Materials Science and Engineering: C. 2003;23(6-8):763-72##.
[10] Yaghoubi AS, Liaw B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies. Composite Structures. 2012;94(8):2585-98##.
[11] Sitnikova E, Guan Z, Schleyer G, Cantwell W. Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading. International Journal of Solids and Structures. 2014;51(18):3135-46##.
[12] Khosravi H, Eslami-Farsani R, Ebrahimnezhad-Khaljiri H. An experimental study on mechanical properties of epoxy/basalt/carbon nanotube composites under tensile and flexural loadings. Journal of Science and Technology of composites. 2016;3(2):187-94##.
[13] Taraghi I, Fereidoon A, Taheri-Behrooz F. Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Materials & Design. 2014;53:152-8##.
[14] Khajeh Arzani H, Kabiri Ataabadi AR, Chaparian Y. Investigation of effect of structural parameters on high velocity impact resistance of fiber metal laminates. Modares Mechanical Engineering. 2019;19(6):1529-38##.
[15] Lighat GH, Pol MH. Experimental investigation of effects of nanoclay on ballistic properties of GLARE. Modares Mechanical Engineering. 2014;14(4):141-6##.
[16] Khansari M, Khodarahmi H, Vaziri A. Experimental study of ballistic properties of hybrid aluminum and epoxy matrix composite reinforced with carbon nanotube. Modares Mechanical Engineering. 2017;17(8):126-32##.
[17] Chaparian Y, Kabiri A, Khaje Arzani H, Gerami G. Experimental and numerical investigation of high velocity impact resistance in fiber metal laminates. Journal of Science and Technology of Composites. 2018;5(1):99-108##.
[18] Ghalami-Choobar M, Sadighi M. Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core. Aerospace Science and Technology. 2014;32(1):142-52##.
[19] Zarei H, Sadighi M, Minak G. Ballistic analysis of fiber metal laminates impacted by flat and conical impactors. Composite Structures. 2017;161:65-72##.
[20] Eslami-Farsani R, Shahrabi-Farahani A, Khosravi H, Zamani MR. A study on the flexural response of grid composites containing multi-walled carbon nanotubes. Journal of Science and Technology of Composites. 2017;4(1):101-8##.
[21] Zhang J, Ju S, Jiang D, Peng H-X. Reducing dispersity of mechanical properties of carbon fiber/epoxy composites by introducing multi-walled carbon nanotubes. Composites Part B: Engineering. 2013;54:371-6##.
[22] Shokrieh MM, Zeinedini A, Ghoreishi SM. Effects of adding multiwall carbon nanotubes on mechanical properties of Epoxy resin and Glass/Epoxy laminated composites. Modares Mechanical Engineering. 2015;15(9):125-33##.
[23] Bashiri Goodarzi H, Yarmohammad Tooski M. An experimental study of the effects of carbon nanotube and graphene addition on the impact strength of Epoxy/Basalt fiber composite. Journal of Science and Technology of Composites. 2019;6(3):411-8##.
[24] Khoramishad H, Alikhani H, Dariushi S. An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates. Composite Structures. 2018;201:561-9##.
[25] Aghamohammadi H, Eslami-Farsani R, Tcharkhtchi A. The effect of multi-walled carbon nanotubes on the mechanical behavior of basalt fibers metal laminates: An experimental study. International Journal of Adhesion and Adhesives. 2020;98:102538##.
[26] ASTM‐D2651‐01. Standard Guide for Preparation of Metal Surfaces for Adhesive Bonding. American Society for Testing and Materials (ASTM) West Conshohocken, PA; 2001##.
[27] Ghashochi-Bargh H, Hasani M. Investigation of lamb waves propagation in variable stiffness fiber metal laminated plates using finite element method. Journal of Aerospace Mechanics. 2023;19(3): 81-92##.