[1] Zhang X-y, Zong Q, Tian B-l, Shao S-k, Liu W-j. Finite-time fault estimation and fault-tolerant control for rigid spacecraft. Journal of Aerospace Engineering. 2018;31(6):04018091. DOI :10.1061/(ASCE)AS.1943-5525.0000915.
[2] Nemati F, Hamami SMS, Zemouche A. A nonlinear observer-based approach to fault detection, isolation and estimation for satellite formation flight application. Automatica. 2019;107:474-82. DOI :10.1016/j.automatica.2019.06.007.
[3] Sun G, Xu S, Li Z. Finite-time fuzzy sampled-data control for nonlinear flexible spacecraft with stochastic actuator failures. IEEE Transactions on Industrial Electronics. 2017;64(5):3851-61. DOI :10.1109/TIE.2017.2652366.
[4] Cao T, Gong H, Han B. Observer-Based Predefined-Time Attitude Control for Spacecraft Subject to Loss of Actuator Effectiveness. Processes. 2022;10(11):2294. DOI :10.3390/pr10112294.
[5] Wang K, Meng T, Wang W, Song R, Jin Z. Finite-time extended state observer based prescribed performance fault tolerance control for spacecraft proximity operations. Advances in Space Research. 2022;70(5):1270-84. DOI :10.1016/j.asr.2022.05.072.
[6] Benosman M, Lum K-Y. Passive actuators' fault-tolerant control for affine nonlinear systems. IEEE Transactions on Control Systems Technology. 2009;18(1):152-63. DOI :10.1109/TCST.2008.2009641.
[7] Liao F, Wang JL, Yang G-H. Reliable robust flight tracking control: an LMI approach. IEEE transactions on control systems technology. 2002;10(1):76-89. DOI :10.1109/87.974340.
[8] Niemann H, Stoustrup J. Passive fault tolerant control of a double inverted pendulum—a case study. Control engineering practice. 2005;13(8):1047-59. DOI :10.1016/j.conengprac.2004.11.002.
[9] Bonivento C, Isidori A, Marconi L, Paoli A. Implicit fault-tolerant control: application to induction motors. Automatica. 2004;40(3):355-71. DOI :10.1016/j.automatica.2003.10.003.
[10] Bai Y, Biggs JD, Wang X, Cui N. Attitude tracking with an adaptive sliding mode response to reaction wheel failure. European Journal of Control. 2018;42:67-76. DOI :10.1016/j.ejcon.2018.02.008.
[11] Wang Z, Li Q, Li S. Adaptive integral-type terminal sliding mode fault tolerant control for spacecraft attitude tracking. IEEE Access. 2019;7:35195-207. DOI :10.1109/ACCESS.2019.2901966.
[12] Zhou N, Kawano Y, Cao M. Neural network-based adaptive control for spacecraft under actuator failures and input saturations. IEEE transactions on neural networks and learning systems. 2019;31(9):3696-710. DOI :10.1109/TNNLS.2019.2945920.
[13] Tan C, Yao X, Tao G, Qi R. A multiple-model based adaptive actuator failure compensation scheme for control of near-space vehicles. IFAC Proceedings Volumes. 2012;45(20):594-9. DOI :10.3182/20120829-3-MX-2028.00241.
[14] Jiang Y, Hu Q, Ma G. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA transactions. 2010;49(1):57-69. DOI :10.1016/j.isatra.2009.08.003.
[15] Hu Q, Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dynamics. 2011;64:13-23. DOI :10.1007/s11071-010-9842-z.
[16] Ma Y, Jiang B, Tao G, Cheng Y. Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback. Journal of the Franklin Institute. 2014;351(1):296-314. DOI :10.1016/j.jfranklin.2013.08.028.
[17] Huo B, Xia Y, Yin L, Fu M. Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2016;47(8):1898-908. DOI :10.1109/TSMC.2016.2564918.
[18] Yao X, Tao G, Qi R. Adaptive actuator failure compensation and disturbance rejection scheme for spacecraft. Journal of Systems Engineering and Electronics. 2014;25(4):648-59. DOI :10.1109/JSEE.2014.00075.
[19] Ma Y, Jiang B, Tao G, Yang H. Adaptive direct compensation control scheme for spacecraft with multiple actuator faults. Journal of Guidance, Control, and Dynamics. 2019;42(4):923-30. DOI :10.2514/1.G003661.
[20] Yao X, Tao G, Ma Y, Qi R. Adaptive actuator failure compensation design for spacecraft attitude control. IEEE Transactions on Aerospace and Electronic Systems. 2016;52(3):1021-34. DOI :10.1109/TAES.2016.130802.
[21] Xu Y, Hu Q, Shao X. Composite adaptive attitude control for combined spacecraft with inertia uncertainties. Aerospace Science and Technology. 2022;131:107984. DOI :10.1016/j.ast.2022.107984.
[22] Jamshidi S, Mirzaei M, Malekzadeh M. Applied nonlinear control of spacecraft simulator with constraints on torque and momentum of reaction wheels. ISA transactions. 2023. DOI :10.1016/j.isatra.2023.03.027.
[23] Khodaverdian M, Malekzadeh M. Attitude stabilization of spacecraft simulator based on modified constrained feedback linearization model predictive control. IET Control Theory & Applications. 2023;17(8):953-67. DOI :10.1049/cth2.12429.
[24] Jamshidi S, Mirzaei M, Malekzadeh M. Applied Optimal Control of Spacecraft Simulator Subject to Failures of Reaction Wheels. Arabian Journal for Science and Engineering. 2023:1-16.
[25] Malekzadeh M, Sadeghian H. Attitude control of spacecraft simulator without angular velocity measurement. Control Engineering Practice. 2019;84:72-81. DOI :10.1016/j.conengprac.2018.11.011.
[26] Malekzadeh M, Rezayati M, Saboohi M. Hardware-in-the-loop attitude control via a high-order sliding mode controller/observer. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2018;232(10):1944-60. DOI :10.1177/0954410017706992.
[27] Li Z, Chen X. Adaptive actuator fault compensation and disturbance rejection scheme for spacecraft. International Journal of Control, Automation and Systems. 2021;19:900-9. DOI :10.1007/s12555-019-0621-4.