[1] Al-Farhany K, Al-Muhja B, Ali F, Khan U, Zaib A, Raizah Z, Galal AM. The baffle length effects on the natural convection in nanofluid-filled square enclosure with sinusoidal temperature. Molecules. 2022 Jul 12;27(14):4445. DOI:10.3390/molecules27144445.
[2] Omara A, Touiker M, Bourouis A. Thermosolutal natural convection in a partly porous cavity with sinusoidal wall heating and cooling. International Journal of Numerical Methods for Heat & Fluid Flow. 2022 Jan 20;32(3):1115-44. DOI:10.1108/HFF-01-2021-0062.
[3] Iftikhar B, Siddiqui MA, Javed T. Dynamics of magnetohydrodynamic and ferrohydrodynamic natural convection flow of ferrofluid inside an enclosure under non-uniform magnetic field. Alexandria Engineering Journal. 2023 Mar 1;66:523-36. DOI:10.1016/j.aej.2022.11.011.
[4] Islam T, Yavuz M, Parveen N, Fayz-Al-Asad M. Impact of non-uniform periodic magnetic field on unsteady natural convection flow of nanofluids in square enclosure. Fractal and Fractional. 2022 Feb 11;6(2):101. DOI:10.3390/fractalfract6020101.
[5] Nemati M, Farahani SD. Using lattice Boltzmann method to control entropy generation during conjugate heat transfer of power-law liquids with magnetic field and heat absorption/production. Computational Particle Mechanics. 2023 Jun;10(3):331-54. DOI 10.1007/s40571-022-00497-3.
[6] Shahriari A. Numerical simulation of free convection heat transfer of nanofluid in a wavy-wall cavity with sinusoidal temperature distribution, using lattice Boltzmann method. Modares Mechanical Engineering. 2016 Nov 10;16(9):143-54. DOR http://dorl.net/dor/20.1001.1.10275940.1395.16.9.11.0.
[7] Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat and Mass Transfer. 2003 Aug 1;125(4):567-74. DOI:10.1115/1.1571080.
[8] Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat and mass transfer. 2003 Sep;39(8-9):775-84. DOI:10.1007/s00231-002-0382-z.
[9] Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters. 2005 Oct 10;87(15):153107. DOI:10.1063/1.2093936.
[10] Khan F, Xiao-Dong Y, Aamir N, Saeed T, Ibrahim M. The effect of radiation on entropy and heat transfer of MHD nanofluids inside a quarter circular enclosure with a changing L-shaped source: lattice Boltzmann methods. Chemical Engineering Communications. 2023 May 4;210(5):740-55. DOI:10.1080/00986445.2021.1990887.
[11] Hussain S, Pour MS, Jamal M, Armaghani T. MHD mixed convection and entropy analysis of non-Newtonian hybrid nanofluid in a novel wavy elbow-shaped cavity with a quarter circle hot block and a rotating cylinder. Experimental Techniques. 2023 Feb;47(1):17-36. DOI:10.1007/s40799-022-00549-6.
[12] Kumar S, Sharma K. Entropy optimization analysis of Marangoni convective flow over a rotating disk moving vertically with an inclined magnetic field and nonuniform heat source. Heat Transfer. 2023 Mar;52(2):1778-805. DOI:10.1002/htj.22763.
[14] Tighchi HA, Sobhani M, Esfahani JA. Effect of volumetric radiation on natural convection in a cavity with a horizontal fin using the lattice Boltzmann method. The European Physical Journal Plus. 2018 Jan;133:1-8. DOI:10.1140/epjp/i2018-11835-1.
[15] Sheikholeslami M, Li Z, Shamlooei MJ. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Physics Letters A. 2018 Jun 19;382(24):1615-32. DOI:10.1016/j.physleta.2018.04.006.
[16] Bai J, Hu X, Tao YH, Ji WH. Investigation of non-Newtonian power-law free convection affected by a magnetic field in an inclined quarter-circle chamber containing the lozenge-shaped obstacle via MRT-LBM of first and second laws of thermodynamics. Engineering Analysis with Boundary Elements. 2022 Dec 1;145:335-51. DOI:10.1016/j.enganabound.2022.09.022.
[17] Pordanjani AH, Aghakhani S, Alnaqi AA, Afrand M. Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions. International Journal of Mechanical Sciences. 2019 Mar 1;152:99-117. DOI:10.1016/j.ijmecsci.2018.12.030.
[18] Rezaie MR, Norouzi M. Numerical investigation of MHD flow of non-Newtonian fluid over confined circular cylinder: a lattice Boltzmann approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018 Apr;40:1-0. DOI:10.1007/s40430-018-1128-2.
[19] Rahman A, Redwan DA, Thohura S, Kamrujjaman M, Molla MM. Natural convection and entropy generation of non-Newtonian nanofluids with different angles of external magnetic field using GPU accelerated MRT-LBM. Case Studies in Thermal Engineering. 2022 Feb 1;30:101769. DOI:10.1016/j.csite.2022.101769.
[20] Aljaloud AS. Hybrid nanofluid mixed convection in a cavity under the impact of the magnetic field by lattice Boltzmann method: Effects of barrier temperature on heat transfer and entropy. Engineering Analysis with Boundary Elements. 2023 Feb 1;147:276-91. DOI:10.1016/j.enganabound.2022.12.007.
[21] Teamah MA, El-Maghlany WM. Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. International Journal of Thermal Sciences. 2012 Aug 1;58:130-42. DOI:10.1016/j.ijthermalsci.2012.02.029.
[22] Zainodin S, Jamaludin A, Nazar R, Pop I. MHD Mixed Convection Flow of Hybrid Ferrofluid through Stagnation-Point over the Nonlinearly Moving Surface with Convective Boundary Condition, Viscous Dissipation, and Joule Heating Effects. Symmetry. 2023 Apr 7;15(4):878. DOI:10.3390/sym15040878.
[23] Rana BK, Senapati JR. Natural convection from an isothermally heated hollow vertical cylinder submerged in quiescent power-law fluids. Journal of Thermal Science and Engineering Applications. 2023 Feb 1;15(2):021003. DOI:10.1115/1.4055824.
[24] Malkeson SP, Alshaaili S, Chakraborty N. Numerical investigation of steady state laminar natural convection of power-law fluids in side-cooled trapezoidal enclosures heated from the bottom. Numerical Heat Transfer, Part A: Applications. 2023 Apr 3;83(7):770-89. DOI:10.1080/10407782.2022.2157353.
[25] Alqahtani AM, Sajadi SM, Al Hazmi SE, Alsenani TR, Alqurashi RS, El Bouz MA. Entropy generation and mixed convection in an enclosure with five baffles exposed to a uniform magnetic field with volumetric radiation for the solar collectors via lattice Boltzmann method. Engineering Analysis with Boundary Elements. 2023 May 1;150:285-97. DOI:10.1016/j.enganabound.2023.01.028.
[26] Rahman A, Nag P, Molla MM, Hassan S. Magnetic field effects on natural convection and entropy generation of non-Newtonian fluids using multiple-relaxation-time lattice Boltzmann method. International Journal of Modern Physics C. 2021 Jan 17;32(01):2150015. DOI:10.1142/S0129183121500157.
[27] Nemati M, Sefid M, Mohammad Sajadi S, Ghaemi F, Baleanu D. Lattice Boltzmann method to study free convection and entropy generation of power-law fluids under influence of magnetic field and heat absorption/generation. Journal of Thermal Analysis and Calorimetry. 2022 Oct;147(19):10569-94. DOI:10.1007/s10973-022-11271-1.
[28] Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. International Communications in Heat and Mass Transfer. 2008 Jul 1;35(6):696-703. DOI DOI:10.1016/j.icheatmasstransfer.2008.02.002.
[29] Massoudi MD, Ben Hamida MB, Almeshaal MA. Free convection and thermal radiation of nanofluid inside nonagon inclined cavity containing a porous medium influenced by magnetic field with variable direction in the presence of uniform heat generation/absorption. International Journal of Numerical Methods for Heat & Fluid Flow. 2021 Mar 10;31(3):933-58. DOI:10.1108/HFF-04-2020-0223.