[1] Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science. 2000;289(5479):602##.
[2] Ajori S, Sadeghi F, Ansari R. Dynamic behavior of chloride ion-electrically charged open carbon nanocone oscillators: A molecular dynamics study. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2021;235(21):5709-5717##.
[3] Liu R, Zhao Y, Sui C, Sang Y, Hao W, Li J, Wu J, He X, Wang C. Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science. 2023;222: 112105##.
[4] Al Salihi HA, Fayad MA, Slepchenkov M, Shunaev V. Nanoscale oscillator on the base of single-walled carbon nanotube with internal fullerenes C36 and C80. Laser Physics, Photonic Technologies, and Molecular Modeling. 2020;11458:239##.
[5] Sarapat P, Hill JM, Baowan D. Mechanics of atoms interacting with a carbon nanotorus: Optimal configuration and oscillation behaviour. Philosophical Magazine. 2019;99(11):1386##.
[6] Minkel JR. Focus: nanotubes in the fast lane. Physics. 2002;9:4##.
[7] Damnjanović M, Milošević I, Vuković T, Sredanović R. Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes. Physical Review B. 1999;60(4):2728##.
[8] Awad AA, Houshang A, Zahedinejad M, Khymyn R, Åkerman J. Width dependent auto-oscillating properties of constriction based spin Hall nano-oscillators. Applied Physics Letters. 2020;116(23): 232401##.
[9] Hem J, Buda-Prejbeanu LD, Ebels U. Power and phase dynamics of injection-locked spin torque nano-oscillators under conservative and dissipative driving signals. Physical Review B. 2019; 100(5):054414##.
[10] Li L, Chen L, Liu R, Du Y. Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators. Chinese Physics B. 2020;29(11):117102##.
[11] Li C, Wang S, Xu N, Yang X, Liu B, Yang B, Fang L. Spin-torque nano-oscillators based on radial vortex in the presence of interface Dzyaloshinskii-Moriya interaction. Journal of Magnetism and Magnetic Materials. 2020;498:166155##.
[12] Guo W, Guo Y, Gao H, Zheng Q, Zhong W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Physical Review Letters. 2003; 91(12):125501##.
[13] Song HY, Zha XW. Molecular dynamics study of effects of radius and defect on oscillatory behaviors of C60-nanotube oscillators. Physical Letters A. 2009;373(11):1058##.
[14] Girifalco LA. Interaction potential for carbon (C60) molecules. The Journal of Physical Chemistry. 1991;95(14):5370##.
[15] Stevens K, Thamwattana N, Tran‐Duc T. Continuum modeling with functional Lennard–Jones parameters for DNA‐graphene Interactions. Advanced Theory and Simulations. 2023;6(5):2200896##.
[16] Sadeghi F, Ajori S. Dynamic behavior of lysozyme enzyme inside titania nanotubes: a continuum approach. The European Physical Journal Plus. 2022; 137(10):1178##.
[17] Alshehri MH. Continuum modelling for encapsulation of anticancer drugs inside nanotubes. Mathematics. 2021;9(19):2469##.
[18] Ansari R, Kazemi E, Mahmoudinezhad E, Sadeghi F. Preferred position and orientation of anticancer drug cisplatin during encapsulation into single-walled carbon nanotubes. Journal of Nanotechnology in Engineering and Medicine. 2012;3(1):010903##.
[19] Ansari R, Alisafaei F, Alipour A, Mahmoudinezhad E. On the van der Waals interaction of carbon nanocones. Journal of Physics and Chemistry of Solids. 2012; 73(6):751##.
[20] Baowan D, Thamwattana N, Tran-Duc T. Critical sizes for PET cylindrical and hourglass shaped pores for selective ion channels. Physica B: Condensed Matter. 2022;633:413476##.
[21] Hilder TA, Hill JM. Continuous versus discrete for interacting carbon nanostructures. Journal of Physics A: Mathematical and Theoretical. 2007;40(14):3851##.
[22] Ansari R, Sadeghi F, Ajori S. Continuum and molecular dynamics study of C60 fullerene–carbon nanotube oscillators. Mechanics Research Communications. 2013;47:18-23##.
[23] Ansari R, Gholami R. Dynamic stability analysis of multi-walled carbon nanotubes with arbitrary boundary conditions based on the nonlocal elasticity theory. Mechanics of Advanced Materials and Structures. 2017;24(14):1180-1188##.
[24] Ansari R, Gholami R, Sahmani S, Norouzzadeh A, Bazdid-Vahdati M. Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment. Acta Mechanica Solida Sinica. 2015;28(6):659-667##.
[25] Ansari R, Gholami R, Rouhi H. Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Composite Structures. 2015;126:216-226##.
[26] Ansari R, Gholami R, Ajori S. Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. Journal of Vibration and Acoustics. 2013;135(5):051016##.
[27] Baowan D, Hill JM. Force distribution for double-walled carbon nanotubes and gigahertz oscillators. Zeitschrift für angewandte Mathematik und Physik. 2007;58:857##.
[28] Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters. 2002;88(4):045503##.
[29] Cox BJ, Thamwattana N, Hill JM. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behaviour. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2007;463(2078):477##.
[30] Thamwattana N, Hill JM. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes. Journal of Nanoparticle Research. 2008;10:665-677##.
[31] Ansari R, Sadeghi F, Motevalli B. A comprehensive study on the oscillation frequency of spherical fullerenes in carbon nanotubes under different system parameters. Communications in Nonlinear Science and Numerical Simulation. 2013;18(3):769##.
[32] Ansari R, Sadeghi F, Darvizeh M. Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes. Physica B: Condensed Matter. 2016;482:28-37##.
[33] Ansari R, Sadeghi F, Ajori S. Oscillation characteristics of carbon nanotori molecules along carbon nanotubes under various system parameters. European Journal of Mechanics-A/Solids. 2017;62:67-79##.
[34] Cox BJ, Thamwattana N, Hill JM. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007;463(2078):461##.
[35] Jones JE. On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1924;106(738) :441-462##.
[36] Zheng Q, Liu JZ, Jiang Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Physical Review B. 2002;65(24):245409##.