[1] Bouazara mohamed, J.Richard marc. An optimization method designed to improve 3-D vehicle comfort and road holding capability through the use of active and semi-active suspensions. European Journal of Mechanics - A/Solids. 2001;20: 509-520. DOI :10.1016/S0997-7538(01)01138-X.
[2] Hać A, Youn I. Optimal semi-active suspension with preview based on a quarter car model. Journal of Vibration and Acoustics. 1992 ;114(1):84-92. DOI :10.1115/1.2930239.
[3] Fleps-Dezasse M, Brembeck M. LPV Control of Full-Vehicle Vertical Dynamics using Semi-Active Dampers. 2016; 49(11):432-39. DOI :10.1016/ j.ifacol. 016.08.064.
[4] Yildirim Ş. Vibration control of suspension systems using a proposed neural network, Journal of Sound and Vibration. (2004); 277(4-5):1059–69. DOI :10.1016/j.jsv.2003.09.057.
[5] Mendoza R, Nawarecki M, Sename O, Dugard L, M'Saad M. An optimal control approach for the design of an active suspension system. IFAC Proceedings. 1998; 3(1): 43-8. DOI :10.1016/S1474-6670(17)42175-6.
[6] Sepehri B, Hemati A. Active Suspension vibration control using Linear H-Infinity and optimal control. International Journal of Automotive Engineering. 2014; 4: 805-11.
[7] Yagiz N, Hacioglu Y. Backstepping control of a vehicle with active suspensions. Control Engineering Practice. 2008; 16(12): 1457-67. DOI :10.1016/j.conengprac.2008.04.003.
[8] D'Amato F, Viassolo D. Fuzzy control for active suspensions, Mechatronics. 2000; 10: 897-920. DOI :10.1016/S0957-4158(99)00079-3.
[9] Slotine J, Sliding controller design for nonlinear systems. International Journal of Control.1984; 40(2):421-34. DOI :10.1080/00207178 408933284.
[10] Yoshimura T, Isari Y, Li Q, Hino J. Active suspension of motor coaches using skyhook damper and fuzzy logic control. Control Engineering Practice. 1997; DOI 5(2):175-84. DOI :10.1016/S0967-0661 (97)00224-4.
[11] Deshpande V, Shendge P, Phadke S. Active suspension systems for vehicles based on a sliding-mode controller in combination with inertial delay control, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2013; 227(5):675-90. DOI :10.1177/0954407012462 953.
[12] Salehpour M, Jamali, A, Bagheri A, Nariman-Zadeh N. Optimum sliding mode controller design based on skyhook model for nonlinear vehicle vibration model. Automotive Science and Engineering. 2017;7(4):2537-50. DOI :10.22068/ijae. 7.4.2537.
[13] Kitayama S, Arakawa M, Yamazaki K. Differential evolution as the global optimization technique and its application to structural optimization, Applied Soft Computing.2011; 11(4): 3792–803. DOI :10.1016/ j.asoc.2011.02.012.
[14] Srinivas N, Deb K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation. 1994;2(3):221–48. DOI :10.1162/evco.1994.2.3.221.
[15] Toffolo A, Benini E. Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms. Evolutionary Computation. 2003; 11(2): 151-67.
[16] Guo L X, Zhang L P. Robust control of active vehicle suspension under nonstationary running. Journal of Sound and Vibration. 2012;331(26):5824–37. DOI :10.1162/106365603766646816.
[17] Kim C, Ro P I. A sliding mode controller for vehicle active suspension systems with nonlinearities. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 1998;212(20):79-92. DOI :10.1243/0954407981525 812.
[18] Nariman-Zadeh N, Salehpour M, Jamali A, Haghgoo E. Pareto optimization of a five degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA). Engineering Applications of Artificial Intelligence 2010;23(54):543–51. DOI :10.1016/ j.engappai.2009.08.008.
[19] Jamali A, Rammohan Mallipeddi, Salehpour M, Bagheri A. Multi-objective differential evolution algorithm with fuzzy inference-based adaptive mutation factor for Pareto optimum design of suspension system. Swarm and Evolutionary Computation. 2020; 54:100666. DOI :10.1016/ j.swevo.2020.100666.
[20] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic algorithm: , IEEE Transactions on Evolutionary Computation. (2002); 6(2): 182-97. DOI :10.1109/4235.996017.
[21] Jamali A, Salehpour M, Nariman-zadeh N. Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters. Multibody System Dynamics. 2013; 30(3):265-85. DOI :10.1007/s11044-012-9337-4.
[22] Mohammadmoradi S, Akbari A, Mirzaei M. Robust Model Predictive Control for Active Suspension System using Linear Matrix Inequalities. Modares Mechanical Engineering 2018; 17 (12) :183-192. DOR :20.1001.1.10275940.1396.17.12.48.0.
[23] Ramezani Moghadam A, Kebriaei H. Design and stability analysis of optimal controller and observer for Itô stochastic model of active vehicle suspension system. Journal of Control. 2019;13(3):71-83. DOR :20.1001.1.20088345.1398.13.3.4.9.
[24] Abdi B, Mirzaei M, Rafatnia S, Akbari Alvanagh A. Analytical Design of Constrained Nonlinear Optimal Controller for Vehicle Active Suspension System considering the Limitation of Hydraulic Actuator. Journal of Control. 2017;11(3):25-34. DOR :20.1001.1.20088345.1396.11.3.4.5.
[25] Ghorbany M, Ebrahimi-Nejad S, Mollajafari M. Global-guidance chaotic multi-objective particle swarm optimization method for pneumatic suspension handling and ride quality enhancement on the basis of a thermodynamic model of a full vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2023;0(0). doi:10.1177/09544070221148287. DOI :10.1177/09544070221148287.
[26] Haiping Du, Nong Zhang. control of active vehicle suspensions with actuator time delay. Journal of Sound and Vibration 2007; 301:236–52. DOI :10.1016/j.jsv.2006.09.022.
[27] Liu G, Li Y, Nie X, Zheng H. A novel clustering-based differential evolution with 2 multi-parent crossovers for global optimization. Applied Soft Computing. 2012;12(2):663-81. DOI :10.1016/j.asoc. 2011.09.020.
[28] Zhang C, Chen J, Xin B. Distributed memetic differential evolution with the synergy of Lamarckian and Baldwinian learning. Applied Soft Computing. 2013;13(5):2947-59. DOI :10.1016/j.asoc.2012.02.028.
[29] Deng W, Yang X, Zou L, Wang M, Liu Y, Li Y. An improved self-adaptive differential evolution algorithm and its application. Chemometrics and Intelligent Laboratory Systems. 2013; 128:66–76. DOI :10.1016/j.chemolab.2013.07.004.
[30] Verros G, Natsiavas S, Papadimitriou C. Design optimization of quarter-car models with passive and semi-active suspensions under random road excitation. Journal of Vibration and Control. 2005; 11:581–606. DOI :10.1177/1077546305052315.
[31] International Standard, mechanical vibration-road surface profiles-reporting of measured data, is ISO8608:2016(E), ICS 17.160;93.080.10.