[1] Tabiei A, Ivanov I. Computational micro‐mechanical model of flexible woven fabric for finite element impact simulation. International Journal for Numerical Methods in Engineering. 2002;53(6):1259-76. DOI :10.1002/nme.321.
[2] Zhang G, Batra R, Zheng J. Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor. Composites Part B: Engineering. 2008;39(3):476-89. DOI :10.1016/j.compositesb.2007.04.002.
[3] Khodadadi A, Liaghat G, Bahramian AR, Ahmadi H, Anani Y, Asemani S, Razmkhah O. High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: a comparative study. Composite Structures. 2019;216:159-67. DOI :10.1016/j.compstruct.2019.02.080.
[4] Hasanzadeh M, Mottaghitalab V, Babaei H, Rezaei M. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics. Composites Part A: Applied Science and Manufacturing. 2016;88:263-71. DOI :10.1016/j.compositesa.2016.06.006.
[5] Liu T, Zhang X-t, He N-b, Jia G-h. Numerical material model for composite laminates in high-velocity impact simulation. Latin American Journal of Solids and Structures. 2017;14:1912-31. DOI :10.1590/1679-78253750.
[6] Khodadadi A, Liaghat GH, Akbari MA, Tahmasebi M. Numerical and experimental analysis of penetration into Kevlar fabrics and investigation of the effective factors on the ballistic performance. Modares Mechanical Engineering. 2014;13(12):124-33. DOR :20.1001.1.10275940.1392.13.12.15.9.
[7] Khodadadi A, Liaghat G, Ahmadi H, Bahramian A, Shahgholian GD, Anani Y, Samane AS. Experimental and numerical analysis of high velocity impact on Kevlar/Epoxy composite plates. Journal of Science and Technology of Composites. 2019;6(2):265-74. DOI :10.22068/jstc.2018.89643.1457.
[8] Bresciani LM, Manes A, Ruggiero A, Iannitti G, Giglio M. Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: Macro-homogeneous and Meso-heterogeneous approaches. Composites Part B: Engineering. 2016;88:114-30. DOI :10.1016/j.compositesb.2015.10.039.
[9] Zarei H, Shahnazar P, Meskini M, Sarkhosh R. Ballistic Performance Analysis of Ultra High Molecular Weight Polyethylene (UHMWPE) Composite. Modares Mechanical Engineering. 2022;22(5):356-5. DOR :20.1001.1.10275940.1401.22.5.5.8.
[10] Wang H, Weerasinghe D, Hazell PJ, Mohotti D, Morozov EV, Escobedo-Diaz JP. Ballistic impact response of flexible and rigid UHMWPE textile composites: Experiments and simulations. Defence Technology. 2023;22:37-53. DOI :10.1016/j.dt.2022.08.009.
[11] Asemani SS, Liaghat GH, Ahmadi H, Anani Y, Khodadadi A. Experimental and Numerical Analysis of High Velocity Impact on 2-Layer kevlar/Elastomer Composite. Modares Mechanical Engineering. 2020;20(12):2733-45. DOR :20.1001.1.10275940.1399.20.12.14.7.
[12] Asemani SS, Liaghat G, Ahmadi H, Anani Y, Khodadadi A, Charandabi SC. The experimental and numerical analysis of the ballistic performance of elastomer matrix Kevlar composites. Polymer Testing. 2021;102:107311. DOI :10.1016/j.polymertesting.2021.107311.
[13] Hasanzadeh M, Mottaghitalab V, Rezaei M, Babaei H. Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact. Thin-Walled Structures. 2017;119:700-6. DOI :10.1016/j.tws.2017.07.020.
[14] Bhudolia SK, Gohel G, Subramanyam ESB, Leong KF, Gerard P. Enhanced impact energy absorption and failure characteristics of novel fully thermoplastic and hybrid composite bicycle helmet shells. Materials & Design. 2021;209:110003. DOI :10.1016/j.matdes.2021.110003.
[18] Mousavizadeh SA, Hosseini M, Hatami H. Experimental and Numerical investigation on the plain and reinforced steel sheets under free fall impact. Iranian Journal of Mechanical Engineering. 2021; 23 (1): 64-84. DOI :10.30506/ijmep.2021.105627.1558.
[19] Mousavizadeh SA, Hosseini M, Hatami H. Experimental studies on energy absorption of curved steel sheets under impact loading and the effect of pendentive on the deformation of samples. Journal of Modeling in Engineering. 2021;18(63):27-40. DOI :10.22075/jme.2020.18501.1765.
[20] Ismail AS, Jawaid M, Naveen J. Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials. 2019;12(13):2094. DOI :10.3390/ma12132094.
[21] Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR, Malvern L. Impact dynamics. Journal of Applied Mechanics. 1983;50(3):702.
[22] Safri S, Sultan M, Yidris N, Mustapha F. Low velocity and high velocity impact test on composite materials–a review. International Journal of Engineering and Science. 2014;3(9):50-60.
[23] Recht R, Ipson TW. Ballistic perforation dynamics. 1963.
[24] Li B, Kidane A, Ravichandran G, Ortiz M. Verification and validation of the Optimal Transportation Meshfree (OTM) simulation of terminal ballistics. International Journal of Impact Engineering. 2012;42:25-36. DOI :10.1016/j.ijimpeng.2011.11.003.
[25] Wei G, Zhang W, editors. Perforation of thin aluminum alloy plates by blunt projectiles: An experimental and numerical investigation. Journal of Physics: Conference Series; 2014: IOP Publishing. DOI :10.1088/1742-6596/500/11/112065.
[26] Senthil K, Iqbal MA, Arindam B, Mittal R, Gupta N. Ballistic resistance of 2024 aluminium plates against hemispherical, sphere and blunt nose projectiles. Thin-Walled Structures. 2018;126:94-105. DOI :10.1016/j.tws.2017.02.028.