[3] Zhao W, Liu H, Lewis FL. Data-driven fault-tolerant control for attitude synchronization of nonlinear quadrotors. IEEE Transactions on Automatic Control. 2021;66(11):5584-91. DOI :10.1109/TAC.2021.3053194.
[4] Amin AA, Hasan KM. A review of fault tolerant control systems: advancements and applications. Measurement. 2019;143:58-68. DOI :10.1016/j.measurement.2019.04.083.
[5] Roshanravan S, Sobhani Gendeshmin B, Shamaghdari S. Design of an actuator fault-tolerant controller for an air vehicle with nonlinear dynamics. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2019;233(10):3534-46. DOI :10.1177/0954410018801254.
[6] Jiang J, Yu X. Fault-tolerant control systems: A comparative study between active and passive approaches. Annual Reviews in control. 2012;36(1):60-72. DOI :10.1016/j.arcontrol.2012.03.005.
[7] Rudin K, Ducard GJ, Siegwart RY. Active fault-tolerant control with imperfect fault detection information: Applications to UAVs. IEEE Transactions on Aerospace and Electronic Systems. 2019;56(4):2792-805.
[8] Lan J, Patton RJ. A new strategy for integration of fault estimation within fault-tolerant control. Automatica. 2016;69:48-59.
[9] Roshanravan S, Shamaghdari S. Simultaneous fault detection and isolation and fault-tolerant control using supervisory control technique: asynchronous switching approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2020;234(8):900-11. DOI :10.1177/0959651819893891.
[10] Ruan Z, Yang Q, Ge SS, Sun Y. Performance-guaranteed fault-tolerant control for uncertain nonlinear systems via learning-based switching scheme. IEEE Transactions on Neural Networks and Learning Systems. 2020;32(9):4138-50. DOI :10.1109/TNNLS.2020.3016954.
[11] Li L, Luo H, Ding SX, Yang Y, Peng K. Performance-based fault detection and fault-tolerant control for automatic control systems. Automatica. 2019;99:308-16. DOI :10.1016/j.automatica.2018.10.047.
[12] Cheng W, Zhang K, Jiang B. Hierarchical Structure-Based Fixed-Time Optimal Fault-Tolerant Time-Varying Output Formation Control for Heterogeneous Multiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2023;53(8):4856-66.. DOI :10.1109/TSMC.2023.3257426.
[13] Bardi M, Dolcetta IC. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations: Springer; 1997. DOI :10.1007/978-0-8176-4755-1.
[14] Lewis FL, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE circuits and systems magazine. 2009;9(3):32-50. DOI :10.1109/MCAS.2009.933854.
[15] Huang J, Zeng W, Xiong H, Noack BR, Hu G, Liu S, Xu Y, Cao H. Symmetry-Informed Reinforcement Learning and its Application to Low-Level Attitude Control of Quadrotors. IEEE Transactions on Artificial Intelligence. 2023;5(3):1147-61. DOI :10.1109/TAI.2023.3249683.
[16] Bernini N, Bessa M, Delmas R, Gold A, Goubault E. Reinforcement learning with formal performance metrics for quadcopter attitude control under non-nominal contexts. Engineering Applications of Artificial Intelligence. 2024; 127: 107090. DOI :10.1016/j.engappai.2023.107090.
[17] Zhu Y, Lian S, Zhong W, Meng, W. Reinforcement learning method for quadrotor attitude control based on expert information. 8th International Conference on Automation, Control and Robotics Engineering (CACRE); 2023: IEEE. DOI :10.1109/CACRE58689.2023.10208497.
[18] Yang Y, Vamvoudakis KG, Modares H, Yin Y, Wunsch DC. Safe intermittent reinforcement learning with static and dynamic event generators. IEEE Transactions on Neural Networks and Learning Systems. 2020;31(12):5441-55. DOI :10.1109/TNNLS.2020.2967871.
[19] Marvi Z, Kiumarsi B. Safe reinforcement learning: A control barrier function optimization approach. International Journal of Robust and Nonlinear Control. 2021;31(6):1923-40. DOI :10.1002/rnc.5132.
[20] Al-Tamimi A, Lewis FL, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B. 2008;38(4):943-9. DOI :10.1109/TSMCB.2008.926614.
[21] Lv Y, Na J, Yang Q, Wu X, Guo Y. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics. International Journal of Control. 2016;89(1):99-112. DOI :10.1080/00207179.2015.1060362.
[22] Lv Y, Na J, Zhao X, Huang Y, Ren X. Multi-H∞ controls for unknown input-interference nonlinear system with reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems. 2021. DOI :10.1109/TNNLS.2021.3130092.
[23] Mishra A, Ghosh S. Simultaneous identification and optimal tracking control of unknown continuous-time systems with actuator constraints. International Journal of Control. 2022;95(8):2005-23. DOI :10.1080/00207179.2021.1890824.
[24] Roshanravan S, Shamaghdari S. Adaptive fault-tolerant tracking control for affine nonlinear systems with unknown dynamics via reinforcement learning. IEEE Transactions on Automation Science and Engineering. 2022;21(1):569-80. DOI :10.1109/TASE.2022.3223702.
[25] Dierks T, Jagannathan S, editors. Optimal control of affine nonlinear continuous-time systems. Proceedings of the 2010 American control conference; 2010: IEEE. DOI :10.1109/ACC.2010.5531586.
[26] Liu D, Yang X, Wang D, Wei Q. Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints. IEEE transactions on cybernetics. 2015;45(7):1372-85. DOI :10.1109/TCYB.2015.2417170.
[27] Yang H, Jiang B, Staroswiecki M. Supervisory fault tolerant control for a class of uncertain nonlinear systems. Automatica. 2009;45(10):2319-24. DOI :10.1016/j.automatica.2009.06.019.
[28] Ma H-J, Xu L-X, Yang G-H. Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems. IEEE Transactions on Cybernetics. 2019;51(4):1913-28. DOI :10.1109/TCYB.2018.2889679.
[29] Choi YC, Ahn HS. Nonlinear control of quadrotor for point tracking: Actual implementation and experimental tests. IEEE/ASME Transactions on Mechatronics. 2014;20(3):1179-92. DOI :10.1109/TMECH.2014.2329945.
[30] Edwards C, Lombaerts T, Smaili H. Fault tolerant flight control. Lecture notes in control and information sciences. 2010;399:1-560. DOI :10.1007/978-3-642-11690-2.
[31] Modares H, Lewis FL, Naghibi-Sistani M-B. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks. IEEE Transactions on neural networks and learning systems. 2013;24(10):1513-25. DOI :10.1109/TNNLS.2013.2276571.
[32] Na J, Mahyuddin MN, Herrmann G, Ren X, Barber P. Robust adaptive finite‐time parameter estimation and control for robotic systems. International Journal of Robust and Nonlinear Control. 2015;25(16):3045-71. DOI :10.1002/rnc.3247.
[33] Modares H, Lewis FL. Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning. Automatica. 2014;50(7):1780-92. DOI :10.1016/j.automatica.2014.05.011.
[34] Abu-Khalaf M, Lewis FL. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica. 2005;41(5):779-91. DOI :10.1016/j.automatica.2004.11.034.
[35] Modares H, Lewis FL, Naghibi-Sistani M-B. Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems. Automatica. 2014;50(1):193-202. DOI :10.1016/j.automatica.2013.09.043.
[36] Stone M. The generalized Weierstrass approximation theorem. Mathematics Magazine. 1948;21(5): 237-254.
[37] Rudin W. Principles of mathematical analysis1953.
[38] Ding SX. Model-based fault diagnosis techniques: design schemes, algorithms, and tools: Springer Science & Business Media; 2008.