[1] Li S, Sun B. Advances in cell mechanics: Springer; 2012. DOI :10.1007/978-3-642-17590-9.
[2] Yang K, Ma Y-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature nanotechnology. 2010;5(8):579-83. DOI :10.1038/nnano.2010.141.
[3] Boroushaki T, Dekamin MG, Hashemianzadeh SM, Naimi-Jamal MR, Koli MG. A molecular dynamic simulation study of anticancer agents and UiO-66 as a carrier in drug delivery systems. Journal of Molecular Graphics and Modelling. 2022;113:108147. DOI :10.1016/j.jmgm.2022.108147.
[4] Ansari R, Kazemi E, Mahmoudinezhad E, Sadeghi F. Preferred position and orientation of anticancer drug cisplatin during encapsulation into single-walled carbon nanotubes. Journal of Nanotechnology in Engineering and Medicine. 2012; 3(1): 010903. DOI :10.1115/1.4006916.
[5] Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift Für Naturforschung C. 1973;28(11-12):693-703. DOI :10.1515/znc-1973-11-1209.
[6] Deuling H, Helfrich W. Red blood cell shapes as explained on the basis of curvature elasticity. Biophysical Journal. 1976;16(8):861-8.
[7] Zarda P, Chien S, Skalak R. Elastic deformations of red blood cells. Journal of Biomechanics. 1977;10(4):211-21. DOI :10.1016/0021-9290(77)90044-6.
[8] Shen H-S. Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environments. Mechanics Research Communications. 2013;54:83-95. DOI :10.1016/j.mechrescom.2013.10.003.
[9] Sahmani S, Aghdam M. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Mathematical Biosciences. 2018;295:24-35. DOI :10.1016/j.mbs.2017.11.002.
[10] Chee C, Lee H, Lu C. Using 3D fluid–structure interaction model to analyse the biomechanical properties of erythrocyte. Physics Letters A. 2008;372(9):1357-62. DOI :10.1016/j.physleta.2007.09.067.
[11] Riva L, Petrini C. A few ethical issues in translational research for gene and cell therapy. Journal of Translational Medicine. 2019;17:1-6. DOI :10.1186/s12967-019-02154-5.
[12] Sadeghi H, Davey K, Darvizeh R, Rajabiehfard R, Darvizeh A. An investigation into finite similitude for high-rate loading processes: advantages in comparison to dimensional analysis and its practical implementation. International Journal of Impact Engineering. 2020;140:103554. DOI :10.1016/j.ijimpeng.2020.103554.
[13] Oshiro RE, Alves M. Scaling impacted structures. Archive of applied mechanics. 2004;74:130-45. DOI :10.1007/BF02637214.
[14] Jiang P, Tian C, Xie R, Meng D. Experimental investigation into scaling laws for conical shells struck by projectiles. International Journal of Impact Engineering. 2006;32(8):1284-98. DOI :10.1016/j.ijimpeng.2004.09.015.
[15] Alves M, Oshiro RE. Scaling impacted structures when the prototype and the model are made of different materials. International Journal of Solids and Structures. 2006;43(9):2744-60. DOI :10.1016/j.ijsolstr.2005.03.003.
[16] Mazzariol LM, Alves M. Experimental verification of similarity laws for impacted structures made of different materials. International Journal of Impact Engineering. 2019;133:103364. DOI :10.1016/j.ijimpeng.2019.103364.
[17] Davey K, Darvizeh R, Al-Tamimi A. Scaled metal forming experiments: a transport equation approach. International Journal of Solids and Structures. 2017;125:184-205. DOI :10.1016/j.ijsolstr.2017.07.006.
[18] Ochoa-Cabrero R, Alonso-Rasgado T, Davey K. Scaling in biomechanical experimentation: a finite similitude approach. Journal of the Royal Society Interface. 2018;15(143):20180254. DOI :10.1098/rsif.2018.0254.
[19] Ochoa-Cabrero R, Alonso-Rasgado T, Davey K. Zeroth-order finite similitude and scaling of complex geometries in biomechanical experimentation. Journal of the Royal Society Interface. 2020;17(167):20190806. DOI :10.1098/rsif.2019.0806.
[20] Moghaddam M, Darvizeh R, Davey K, Darvizeh A. Scaling of the powder compaction process. International Journal of Solids and Structures. 2018;144:192-212. DOI :10.1016/j.ijsolstr.2018.05.002.
[21] Davey K, Darvizeh R, Golbaf A, Sadeghi H. The breaking of geometric similarity. International Journal of Mechanical Sciences. 2020;187:105925. DOI :10.1016/j.ijmecsci.2020.105925.
[22] Rayleigh. The principle of similitude. Nature. 1915;95(2373):202-3.
[23] Selvadurai A. Deflections of a rubber membrane. Journal of the Mechanics and Physics of Solids. 2006;54(6):1093-119. DOI :10.1016/j.jmps.2006.01.001.
[24] Yoon Y-Z, Kotar J, Yoon G, Cicuta P. The nonlinear mechanical response of the red blood cell. Physical Biology. 2008;5(3):036007. DOI :10.1088/1478-3975/5/3/036007.
[25] Yoon D, You D. Continuum modeling of deformation and aggregation of red blood cells. Journal of Biomechanics. 2016;49(11):2267-79. DOI :10.1016/j.jbiomech.2015.11.027.
[26] Ahmad IL, Ahmad MR. A two component red blood cell model for single cell mechanic. 2006.
[27] Carlescu V, Prisacaru G, Olaru D. FEM simulation on uniaxial tension of hyperelastic elastomers. Applied Mechanics and Materials. 2014;659:57-62. DOI :10.4028/www.scientific.net/AMM.659.57.
[28] Barthes-Biesel D, Diaz A, Dhenin E. Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. Journal of Fluid Mechanics. 2002;460:211-22. DOI :10.1017/S0022112002008352.
[29] Rosendahl P, Drass M, Felger J, Schneider J, Becker W. Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers. International Journal of Solids and Structures. 2019;166:32-46. DOI :10.1016/j.ijsolstr.2019.01.030.
[30] Chizari M, Wang B. Estimating material property and failure of a living cell: numerical study. International Journal of Applied Mechanics. 2009;1(02):339-47. DOI :10.1142/S1758825109000125.
[31] Renaud C, Cros J-M, Feng Z-Q, Yang B. The Yeoh model applied to the modeling of large deformation contact/impact problems. International Journal of Impact Engineering. 2009;36(5):659-66. DOI :10.1016/j.ijimpeng.2008.09.008.
[32] Chen Z, Scheffer T, Seibert H, Diebels S. Macroindentation of a soft polymer: Identification of hyperelasticity and validation by uni/biaxial tensile tests. Mechanics of Materials. 2013;64:111-27. DOI :10.1016/j.mechmat.2013.05.003.
[33] Johlitz M, Diebels S. Characterisation of a polymer using biaxial tension tests. Part I: Hyperelasticity. Archive of Applied Mechanics. 2011;81:1333-49. DOI :10.1007/s00419-010-0480-1.