پیش‌بینی بروز آسیب در فرایند شکل‌دهی تدریجی تک‌نقطه‌ای با استفاده از نمودار حدشکل‌دهی تکامل‌یافته

نوع مقاله : گرایش ساخت و تولید

نویسندگان

1 دانشگاه گیلان/ رشت/ ایران

2 عضو هیات علمی دانشکده مهندسی مکانیک دانشگاه گیلان، رشت، ایران

3 داشگاه آزاد تاکستان/ تاکستان/ ایران

چکیده

با توجه به نیاز روزافزون به تولید قطعاتی جدید با بیشترین بازدهی، وجود فرایندهایی که ساخت نمونه اولیه را سهولت بخشند و صرف هزینه و زمان را به حداقل برسانند، بسیار مهم می‌باشد. فرایند شکل‌دهی تدریجی تک‌نقطه‌ای (SPIF) که در آن برای شکل‌دهی قطعه موردنظر نیازی به تولید قالب نیست تا حد زیادی این هدف را محقق کرده است. از مزایای این روش می‌توان به افزایش شکل‌پذیری، انعطاف بیشتر در تولید اشکال پیچیده و کاهش نیروهای شکل‌دهی اشاره کرد. هدف از انجام این مقاله، دستیابی به روشی جدید جهت پیش‌بینی بروز آسیب در فرایند شکل‌دهی تدریجی تک‌نقطه‌ای به‌صورت عددی می‌باشد تا بتوان پیش از انجام فرایند به‌صورت تجربی، بروز آسیب در قطعه را پیش‌بینی کرد. ازآنجایی‌که در فرایند شکل‌دهی تدریجی علاوه بر تنش‌ها و کرنش‌ها صفحه‌ای، تنش‌های نرمال و کرنش‌های برشی ضخامتی قابل‌توجهی بر ورق وارد می‌شود، استفاده از نمودار حدشکل‌دهی مرسوم که در آن شرایط تنشی و کرنشی به‌صورت درون صفحه در نظر گرفته‌شده است، منجر به نتایج نه‌چندان درست و غیرقابل اتکا می‌گردد. ازاین‌رو در این مقاله از نمودار حدشکل‌دهی تکامل‌یافته به‌منظور پیش‌بینی بروز آسیب استفاده‌شده است. در این مقاله، زاویه دیواره قطعه به‌عنوان یک پارامتر جهت بررسی میزان شکل‌دهی موردمطالعه قرارگرفته است. جهت صحت‌سنجی نتایج حاصل از شبیه‌سازی، فرایند شکل‌دهی به‌صورت تجربی نیز برای زوایای دیواره ذکرشده انجام گرفت که نتایج آن تطابق قابل قبولی با نتایج شبیه‌سازی دارد. در هر دو حالت عددی و تجربی زاویه دیواره 67 درجه به‌عنوان حد نهایی شکل‌دهی گزارش‌شده است.

تازه های تحقیق

  • به دست آوردن نمودار حدشکل‌دهی تکامل‌یافته
  • بررسی تأثیر زاویه دیواره بر عمق شکل‌دهی قابل‌دستیابی
  • ارائه مدلی جهت پیش‌بینی بروز آسیب در فرایند SPIF

کلیدواژه‌ها


[1]  Leszak E. Apparatus and process for incremental dieless forming. 1967. Patent US3342051A1##.
[2]  Jeswiet J. Incremental single point forming. Trans NAMRI/SME. 2001;29:75-9##.
[3] Filice L, Fratini L, Micari F. Analysis of material formability in incremental forming. CIRP Annals. 2002;51(1):199-202##.
[4] Keeler SP. Forming limit criteria—sheets. InAdvances in deformation processing 1978 Feb 1 (pp. 127-157). Boston, MA: Springer US##.
[5] Keeler SP. Circular grid system—a valuable aid for evaluating sheet metal formability. Sae Transactions. 1968:371-9##.
[6] Goodwin GM. Application of strain analysis to sheet metal forming problems in the press shop. Sae Transactions. 1968 Jan 1:380-7##.
[7] Hill RT. On discontinuous plastic states, with special reference to localized necking in thin sheets. Journal of the Mechanics and Physics of Solids. 1952;1(1):19-30##.
[8] Marciniak Z, Kuczynski K. Limit strains in the processes of stretch forming sheet steel. Journal of the Mechanics and Physics Solids. 1967:1609-620##.
[9] Sowerby R, Duncan J. Failure in sheet metal in biaxial tension. International Journal of Mechanical Sciences. 1971;13(3):217-29##.
[10] Fatemi A, Dariani BM. The effect of normal and through thickness shear stresses on the formability of isotropic sheet metals. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2016;38:119-31##.
[11] Silva MB, Nielsen PS, Bay N, Martins PAF. Failure mechanisms in single-point incremental forming of metals. The International Journal of Advanced Manufacturing Technology. 2011;56(9):893-903##.
[12]  Su C, Lv S, Wang R, Lv Y, Lou S, Wang Q, Guo S. Effects of forming parameters on the forming limit of single-point incremental forming of sheet metal. The International Journal of Advanced Manufacturing Technology. 2021;113:483-501##.
[13] Movahedinia H, Mirnia MJ, Elyasi M, Baseri H. An investigation on flaring process of thin-walled tubes using multistage single point incremental forming. The International Journal of Advanced Manufacturing Technology. 2018;94(1):867-80##.
[14] Shamsari M, Mirnia MJ, Elyasi M, Baseri H. Formability improvement in single point incremental forming of truncated cone using a two-stage hybrid deformation strategy. The International Journal of Advanced Manufacturing Technology. 2018;94(5):2357-68##.
[15] Ghaferi M, Mirnia MJ, Elyasi M, Jamshidi Aval H. Evaluation of different heat treatment cycles on improving single point incremental forming of AA6061 aluminum alloy. The International Journal of Advanced Manufacturing Technology. 2019;105(1):83-100##.
[16] Darzi S, Mirnia MJ, Elyasi M. Experimental investigation of elevated temperature single point incremental forming of AA6061 Aluminum sheet. Modares Mechanical Engineering. 2020;20(8):2171-84##.
[17] Mirnia MJ, Shamsari M. Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. Journal of Materials Processing Technology. 2017;244:17-43##.
[18] Allwood JM, Shouler DR. Generalised forming limit diagrams showing increased forming limits with non-planar stress states. International journal of Plasticity. 2009;25(7):1207-30##.
[19] Sing W, Rao K. Influence of material properties on sheet metal formability limits. Journal of materials processing technology. 1995;48(1-4):35-41##.
 [20] Taherkhani A, Basti A, Narimanzadeh N, Jamali A. Tool frictional stir effect on dimensional accuracy and formability in single point incremental forming at high rotational speeds. Modares Mechanical Engineering. 2017;16(12):665-74##.
[21] Mohammadi H, Sharififar M, Ataee AA. Numerical and experimental analysis and optimization of process parameters of AA1050 incremental sheet forming. Journal of Computational Applied Mechanics. 2014;45(1):35-45##.

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 26 فروردین 1403
  • تاریخ دریافت: 10 دی 1402
  • تاریخ بازنگری: 30 دی 1402
  • تاریخ پذیرش: 14 فروردین 1403
  • تاریخ انتشار: 26 فروردین 1403