اثر فشار هیدرو استاتیک بر روی ارتعاشات آزاد پوسته استوانه‌ای هیبریدی

نوع مقاله : مکانیک جامدات

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده تحصیلات تکمیلی، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

2 نویسنده مسئول: استادیار، دانشکده تحصیلات تکمیلی، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

3 دانشیار، دانشکده تحصیلات تکمیلی، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

چکیده

با توجه به استفاده روزافزون از پوسته‌های استوانه‌ای هیبریدی در صنایع مختلف تحلیل ارتعاشات آزاد این نوع سازه‌ها دارای اهمیت زیادی می‌باشد. در این پژوهش، ارتعاشات آزاد پوسته استوانه‌ای هیبریدی (کامپوزیت-فلز) تحت تأثیر فشار هیدرو استاتیکی مورد تحلیل و بررسی قرارگرفته است. بررسی فشار هیدرو استاتیکی در پوسته‌های هیبریدی به‌عنوان یکی از موارد مهم و موردنیاز برای طراحی بهینه سازه، بررسی عملکرد سازه در شرایط مختلف محیطی، تحمل و مقاومت در برابر فشار و ... هست. هدف این تحقیق، بررسی تغییرشکل و رفتار سازه تحت‌فشار هیدرو استاتیکی مختلف است. شرایط مرزی را برای پوسته استوانه‌ای به‌صورت گیردار، آزاد و ساده در نظر گرفته‌شده است، معادلات حاکم بر ساختار پوسته استوانه‌ای هیبریدی بر اساس میدان جابجایی و روابط تنش و کرنش به‌صورت ماتریسی با استفاده از تئوری تغییرشکل برشی مرتبه اول پوسته‌ها و اصل همیلتون به‌دست‌آمده و با استفاده از روش عددی مربعات دیفرانسیلی تعمیم‌یافته، معادلات حاکم برسازه حل گردیده و تأثیر زاویه الیاف، مواد کامپوزیتی، فشار هیدرو استاتیکی، نسبت کامپوزیت به فلز، طول به شعاع و ضخامت به شعاع استوانه بر روی فرکانس طبیعی پوسته بررسی و تحلیل‌شده است. نتایج عددی با نتایج تحقیقات انجام‌شده مورد مقایسه و صحت سنجی قرارگرفته شده است. نتایج نشان می‌دهند که پوسته هیبریدی با توزیع مواد مرکب و در نسبت حجمی خاص، رفتار بهتری در برابر فشار هیدرو استاتیکی مختلف نشان می‌دهد.

تازه های تحقیق

  • افزایش فشار هیدرو استاتیک فرکانس طبیعی را کاهش می‌دهد.
  • تأثیر ماده کامپوزیتی در فرکانس طبیعی پوسته استوانه‌ای هیبریدی
  • روش دیفرانسیلی مربعات تعمیم‌یافته

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Hydrostatic Pressure on the Free Vibrations of Hybrid Cylindrical Shell

نویسندگان [English]

  • rashid mohammadi 1
  • mohammad meskini 2
  • heshmatollah mohammadkhanlo 3
1 M.Sc Student, Faculty of Graduate Studies, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran
2 Corresponding author: Assistant Professor, Faculty of Graduate Studies, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran
3 Associate Professor, Faculty of Graduate Studies, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran
چکیده [English]

Considering the increasing use of hybrid cylindrical shells in various industries, the free vibration analysis of these types of structures is very important. In this research, the free vibrations of the hybrid cylindrical shell under the influence of hydrostatic pressure have been analyzed and investigated. Investigating the hydrostatic pressure in hybrid shells is one of the important and required things for the optimal design of the structure, investigating the performance of the structure in different environmental conditions, bearing and resistance to pressure, etc. The boundary conditions for the cylindrical shell have been considered as fixed, free and simple, the equations governing the structure of the hybrid cylindrical shell are based on the displacement field and the stress and strain relations in matrix form using the first-order shear deformation theory of the shell and Hamilton's principle obtained and using generalized differential quadratic numerical method, the governing equations of the structure were solved and the effect of fiber angle, composite materials, hydrostatic pressure, composite to metal ratio, length to radius and thickness to radius of the cylinder on the natural frequency of the shell was investigated  and analyzed. Numerical results have been compared and validated with the results of the research. The results show that the hybrid shell with the distribution of composite materials and in a specific volume ratio shows better behavior against different hydrostatic pressure.

کلیدواژه‌ها [English]

  • Hydrostatic pressure
  • Free vibrations
  • First order shear deformation theory
  • Hybrid
  • Cylindrical shells
[1] Reddy JN and Liu CF. A higher-order shear deformation theory of laminated elastic shells. International journal Engineering and Science. 1985; 23(3): 319–330. DOI 10.1016/0020 7225(85)90051-5##.
[2] Rand O and Stavsky Y. Response and eigenfrequencies of rotating composite cylindrical shells.  journal Sound and Vibration. 1996; 192(1): 65–77. DOI 10.1006/jsvi.1996.0176##.
[3] Lam KY and Loy CT. Influence of boundary conditions for a thin laminated rotating cylindrical shell. Composite Structures. 1998; 41(3–4): 215–228. DOI 10.1016/S0263-8223(98)00012-9##.
[4] Lee YS and Kim YW. Effect of boundary conditions on natural frequencies for rotating composite cylindrical shells with orthogonal stiffeners. Advances in Engineering Software. 1999; 30(9–11): 649–655. DOI 10.1016/S0965-9978(98)00115-X##.
[5] Suzuki K, Shikanai G and Chino T. Vibrations of composite circular cylindrical vessels. International journal of Solids and Structures. 1998; 35(22): 2877–2899. DOI 10.1016/S0020-7683(97)00356-9##.
[6] Ng TY, Li H and Lam KY. Generalized differential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions. International journal of Mechanical Sciences. 2003; 45(3): 567–587. DOI 10.1016/S0020-7403(03)00042-0##.
[7] Jafari AA and Bagheri M. Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution.  Journal Sound and Vibration. 2006. 296(1–2): 353–367. DOI 10.1016/j.jsv.2006.03.001##.
[8] Golfman Y and Sudbury MA. Dynamic stability of the lattice structures in the manufacturing of carbon fiber epoxy/composites including the influence of damping properties. Journal of Advanced Materials. 2007; 3:11-20##.
[9] Khalili SMR, Davar A and Malekzadeh Fard K. Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory. International journal of Mechanical Sciences. 2012; 56(1): 1–25. DOI 10.1016/j.ijmecsci.2011.11.002##.
[10] Zhao L and Wu J. Natural frequency and vibration modal analysis of composite laminated plate. Advanced Materials Research. 2013: 711:  396–400. DOI 10.4028/www.scientific.net/AMR.711.396##.
[11] Hemmatnezhad M, Rahimi GH and Ansari R. On the free vibrations of grid-stiffened composite cylindrical shells. Acta Mechanica. 2014; 225(2): 609–623. DOI 10.1007/s00707-013-0976-1##.
[12] Tullu A, Ku TW and Kang BS. Elastic deformation of fiber-reinforced multi-layered composite conical shell of variable stiffness. Composite Structures. 2016; 154: 634–645. DOI 10.1016/j.compstruct.2016.07.064##.
[13] Zarei M and Rahimi GH. Free vibration analysis of grid stiffened composite conical shells. journal of science and technology of composites. 2017; 4(1):1–8##.
[14] Shen HS, Xiang Y, Fan Y and Hui D. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Composites Part B: Engineering. 2018; 136: 177–186. DOI 10.1016/j.compositesb.2017.10.032##.
[15] Qin Z, Yang Z, Zu J and Chu F. Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. International journal of Mechanical Sciences. 2018; 142–143: 127–139. DOI 10.1016/j.ijmecsci.2018.04.044##.
[16] Lopatin A. Buckling of composite cylindrical shells with rigid end disks under hydrostatic pressure‏. ‏Composite Structures. 2017; 173: 136-143. DOI 10.1016/j.compstruct.2017.03.109##.
[17] Kiani Y, Dimitri R and Tornabene F. Free vibration study of composite conical panels reinforced with FG-CNTs. Engineering Structures. 2018; 172: 472–482. DOI 10.1016/j.engstruct.2018.06.006##.
[18] Shen KC and Pan G. Buckling and strain response of filament winding composite cylindrical shell subjected to hydrostatic pressure: numerical solution and experiment. Composite Structures. 2021; 276(2):114534. DOI 10.1016/j.compstruct.2021.114534##.
[19] Shahgholian DS, Rahimi G, Zarei M and Salehipour H. Free vibration analyses of composite sandwich cylindrical shells with grid cores: experimental study and numerical simulation. Mechanics Based Design of Structures and Machines.2022; 50(2): 687–706. DOI 10.1080/15397734.2020.1725565##.
[20] Wu JH, Liu RJ, Duan Y and Sun YD. Free and forced vibration of fluid-filled laminated cylindrical shell under hydrostatic pressure. International Journal of Pressure Vessels and Piping. 2023; 202:104925. DOI 10.1016/j.ijpvp.2023.104925##.
[21] Cho JR. Free vibration analysis of functionally graded porous cylindrical panels reinforced with graphene platelets. Nanomaterials. 2023; 13(9): 1441. DOI 10.3390/NANO13091441##.
[22] Coskun T, Sahin OS. Modal and random vibration responses of composite overwrapped pressure vessels with various geodesic dome trajectories. Journal of Reinforced Plastics and Composites. 2024; 21:07316844241241567. DOI 10.1177/07316844241241567##.
[23] Meng S, Zhong R, Wang Q, Shi X, Qin B. Vibration characteristic analysis of three-dimensional sandwich cylindrical shell based on the Spectro-Geometric method. Composite Structures. 2024; 327:117661. DOI 10.1016/j.compstruct.2023.117661##.
[24] Wang RT and Lin ZX. Vibration analysis of ring-stiffened cross-ply laminated cylindrical shells. Journal of Sound and Vibration. 2006; 295(3–5): 964–987. DOI 10.1016/j.jsv.2006.01.061##.
[25] Rao SS. Vibration of continuous systems. John Wiley & Sons, INC. 2007##.
[26] Donnell LH. Stability of thin-walled tubes under torsion. Transactions of the American Society of Mechanical Engineers. 1934 Feb 1;56(2):108. DOI 10.1115/1.4019670 ##.
[27] Amabili M. Nonlinear vibrations and stability of shells and plates. 2008; ISBN:9780521883##.
[28] Bochkarev SA and Matveenko VP. Natural vibrations and stability of a stationary or rotating circular cylindrical shell containing a rotating fluid. Computers & Structures. 2011; 89(7–8): 571–580. DOI 10.1016/j.compstruc.2010.12.016##.
[29] Sun Z, Hu G, Nie X, Sun J. An analytical symplectic method for buckling of ring-stiffened graphene platelet-reinforced composite cylindrical shells subjected to hydrostatic pressure. Journal of Marine Science and Engineering. 2022;10(12):1834. DOI 10.3390/jmse10121834##.
[30] Bellman R and Casti J. Differential quadrature and long-term integration. Journal of Mathematical Analysis and Applications. 1971; 34(2): 235–238. DOI 10.1016/0022-247X(71)90110-7##.
[31] Shu C. Differential quadrature and its application in engineering. Springer London. 2000##.
[32] Shu C and Du H. Free vibration analysis of laminated composite cylindrical shells by DQM. Composites Part B: Engineering. 1997; 28(3): 267–274. DOI 10.1016/S1359-8368(96)00052-2##.
[33] Chung H. Free vibration analysis of circular cylindrical shells. Journal of sound and Vibration. 1981; 74(3): 331–350. DOI 10.1016/0022-460X(81)90303-5##.
[34] Arshad S, Naeem MN, Sultana N, Shah AG and Iqbal ASZ. Vibration analysis of bi-layered FGM cylindrical shells. Archive of Applied Mechanics 2011;81:319-43. DOI 10.1007/s00419-010-0409-8##.
[35] Wang Y and Wu D. Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerospace Science and Technology. 2017; 66: 83–91. DOI 10.1016/J.AST.2017.03.003##.
[36] Loy CT, Lam KY and Shu C. Analysis of cylindrical shells using generalized differential quadrature. Shock and Vibration. 1997; 4(3): 193–198. DOI 10.3233/SAV-1997-4305##.
دوره 20، شماره 2 - شماره پیاپی 76
شماره پیاپی 76، فصلنامه تابستان
تیر 1403
صفحه 87-103
  • تاریخ دریافت: 10 اسفند 1402
  • تاریخ بازنگری: 27 اسفند 1403
  • تاریخ پذیرش: 22 اردیبهشت 1403
  • تاریخ انتشار: 01 تیر 1403