[1] Vasiliev VV, Morozov EV. Advanced mechanics of composite materials and structures. Elsevier; 2018.
[2] Davies JM, editor. Lightweight sandwich construction. John Wiley & Sons; 2008.
[3] Vinson J. The behavior of sandwich structures of isotropic and composite materials. Routledge; 2018. DOI: https://doi.org/10.1201/9780203737101.
[4] Shatov AV, Burov AE, Lopatin AV. Buckling of composite sandwich cylindrical shell with lattice anisogrid core under hydrostatic pressure. InJournal of Physics: Conference Series 2020 (Vol. 1546, No. 1, p. 012139). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1546/1/012139.
[5] Zarei M, Rahimi GH, Hemmatnezhad M. Global buckling analysis of laminated sandwich conical shells with reinforced lattice cores based on the first-order shear deformation theory. International Journal of Mechanical Sciences. 2020;187:105872. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105872.
[6] Yang JS, Liu ZD, Schmidt R, Schröder KU, Ma L, Wu LZ. Vibration-based damage diagnosis of composite sandwich panels with bi-directional corrugated lattice cores. Composites Part A: Applied Science and Manufacturing. 2020;131:105781. DOI: https://doi.org/10.1016/j.compositesa.2020.105781.
[7] Shahgholian-Ghahfarokhi D, Rahimi G, Zarei M, Salehipour H. Free vibration analyses of composite sandwich cylindrical shells with grid cores: Experimental study and numerical simulation. Mechanics Based Design of Structures and Machines. 2022;50(2):687-706. DOI: https://doi.org/10.1080/15397734.2020.1725565.
[8] Fallah F, Taati E, Asghari M. Decoupled stability equation for buckling analysis of FG and multilayered cylindrical shells based on the first-order shear deformation theory. Composites Part B: Engineering. 2018 Dec 1;154:225-41. DOI: https://doi.org/10.1016/j.compositesb.2018.07.051.
[9] Fallah F, Taati E. On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores. Acta Mechanica. 2019;230:2145-69. DOI: https://doi.org/10.1007/s00707-019-02385-z.
[10] Chai Y, Li F, Song Z. Nonlinear flutter suppression and thermal buckling elimination for composite lattice sandwich panels. AIAA Journal. 2019 Nov;57(11):4863-72. DOI: https://doi.org/10.2514/1.J058307.
[11] Nazari A, Naderi AA, Malekzadefard K, Hatami A. Experimental and numerical analysis of vibration of FML-stiffened circular cylindrical shell under clamp-free boundary condition. DOI: https://doi.org/10.22068/jstc.2018.80212.1415.
[12] Shahgholian-Ghahfarokhi D, Rahimi G. New analytical approach for buckling of composite sandwich pipes with iso-grid core under uniform external lateral pressure. Journal of Sandwich Structures & Materials. 2021;23(1):65-93. DOI: https://doi.org/10.1177/1099636218821397.
[13] Karttunen AT, Reddy JN, Romanoff J. Two-scale constitutive modeling of a lattice core sandwich beam. Composites Part B: Engineering. 2019 Mar 1;160:66-75. DOI: https://doi.org/10.1016/j.compositesb.2018.09.098.
[14] Li C, Shen HS, Yang J. Low-velocity impact response of cylindrical sandwich shells with auxetic 3D double-V meta-lattice core and FG GRC facesheets. Ocean Engineering. 2022 Oct 15;262:112299. DOI: https://doi.org/10.1016/j.oceaneng.2022.112299.
[15] Zarei M, Rahimi GH. Buckling resistance of joined composite sandwich conical–cylindrical shells with lattice core under lateral pressure. Thin-Walled Structures. 2022 May 1;174:109027. DOI: https://doi.org/10.1016/j.tws.2022.109027.
[16] Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis. CRC press; 2003.
[17] Totaro G. Flexural, torsional, and axial global stiffness properties of anisogrid lattice conical shells in composite material. Composite Structures. 2016;153:738-45. DOI: https://doi.org/10.1016/j.compstruct.2016.06.072.
[18] Taati E, Fallah F, Ahmadian MT. Closed-form solution for free vibration of variable-thickness cylindrical shells rotating with a constant angular velocity. Thin-Walled Structures. 2021;166:108062.. Thin-Walled Structures, 2021: 166, 108062. DOI: https://doi.org/10.1016/j.tws.2021.108062.
[19] Sharma CB, Johns DJ. Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shell. Journal of Sound and Vibration. 1971;14(4):459-74. DOI: https://doi.org/10.1016/0263-8231(84)90011-9.
[20] Rao SS. Vibration of continuous systems. John Wiley & Sons; 2019.
[21] Barbero EJ. Finite element analysis of composite materials using Abaqus®. CRC press; 2023. DOI: https://doi.org/10.1201/9781003108153.
[22] Gibson, R. F. Principles of composite material mechanics. CRC press, 2016. DOI: https://doi.org/10.1201/b19626.
[23] Halpin, J. C., & Tsai, S. W. Environmental factors in composite materials design. US Air Force Technical Report AFML TR, 1967: 67423, 749-767.
[24] Rahnama M, Hamzeloo SR, Morad Sheikhi M. Vibration analysis of anisogrid composite lattice sandwich truncated conical shells: Theoretical and experimental approaches. Journal of Composite Materials. 2024;58(22):2429-42. DOI: https://doi.org/10.1177/00219983241264364.