[1] Cockcroft MG. Ductility and workability of metals. Journal of Metals. 1968;96:2444##.
[2] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology. 1977;99(1):2-15. DOI 10.1115/1.3443401##.
[3] Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. DOI 10.1016/0013-7944(85)90052-9##.
[4] Buyuk M. Development of a tabulated thermo-viscoplastic material model with regularized failure for dynamic ductile failure prediction of structures under impact loading. PhD Dissertation, The George Washington University, 2013##.
[5] Andrade FX, Feucht M, Haufe A, Neukamm F. An incremental stress state dependent damage model for ductile failure prediction. International Journal of Fracture. 2016;200:127-50. DOI 10.1007/s10704-016-0081-2##.
[6] Popławski A, Kędzierski P, Morka A. Identification of Armox 500T steel failure properties in the modeling of perforation problems. Materials & Design. 2020;190:108536. DOI 10.1016/j.matdes.2020.108536##.
[7] Xiao Y, Hu Y. An extended iterative identifcation method for the GISSMO model. Metals. 2019; 9(5):568. DOI 10.3390/met9050568##.
[8] Xiao Y, Hu Y. Numerical and experimental fracture study for 7003 aluminum alloy at different triaxialities. Metals and Materials International. 2021;27:2499-511. DOI 10.1007/s12540-020-00619-7##.
[9] Xiao Y, He Z. A continuum constitutive model for a 7003‑Aluminum alloy considering the stress state and strain rate efects. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2023; 47:741-751. DOI 10.1007/s40997-022-00544-7##.
[10] Chen X, Chen G, Huang L. Validation of GISSMO model for fracture prediction of a third-generation advanced high-strength steel. SAE International Journal of Materials and Manufacturing. 2018; 11(4):293-302. DOI 10.4271/2018-01-0107##.
[11] Ge Y, Dong L, Song H, Gao L, Xiao R. On the Prediction of material fracture for thin-walled cast alloys using GISSMO. Metals. 2022; 12: 1850. DOI 10.3390/met12111850##.
[12] Zhu T, Ding H, Wang Ch, Liu Y, Xiao Sh,Yang G, Yang B. Parameters calibration of the GISSMO failure model for SUS301L-MT. Chinese Journal of Mechanical Engineering. 2023; 36:20. DOI 10.1186/s10033-023-00844-2##.
[13] Seidt JD. Plastic deformation and ductile fracture of 2024-T351 aluminum under various loading conditions. PhD Dissertation, The Ohio State University, 2010##.
[14] Mackenzie AC, Hancock JW, Brown DK. On the influence of state of stress on ductile failure initiation in high strength steels. Engineering Fracture Mechanics. 1977;9(1):167-168. DOI 10.1016/0013-7944(77)90062-5##.
[15] Haufe A, Neukamm F, Feucht M, DuBois P, Borvall T. Recent developments in damage and failure modeling with LS-DYNA. 2010; In; Nordic LS-DYNA Users Forum##.
[16] Rokhy H, Mostofi TM, Ozbakkaloglu T. Calibration of different constitutive material models for Vosges sandstone due to its application in rock-cutting processes. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2022;44(10):468. DOI 10.1007/s40430-022-03764-9##.
[17] Rokhy H, Mostofi TM. Tracking the explosion characteristics of the hydrogen-air mixture near a concrete barrier wall using CESE IBM FSI solver in LS-DYNA incorporating the reduced chemical kinetic model. International Journal of Impact Engineering. 2023;172:104401. DOI 10.1016/j.ijimpeng.2022.104401##.