[1] Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U, Müllauer J, Oehring M, Paul JD. Recent progress in the development of gamma titanium aluminide alloys. Advanced Engineering Materials. 2000;2(11):699-720. DOI: http://dx.doi.org/10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J.
[2] Bewlay BP, Nag S, Suzuki A, Weimer MJ. TiAl alloys in commercial aircraft engines. Materials at High Temperatures. 2016;33:549-59 DOI: http://dx.doi.org/10.1080/09603409.2016.1183068.
[3] Clemens H, Mayer S. Advanced Intermetallic TiAl Alloys. Materials Science Forum. 2017;879:113-8 DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.879.113.
[4] Clemens H, Mayer S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Advance Engineering Materials. 2013;15(4):191-215 DOI: http://dx.doi.org/10.1002/adem.201200231.
[5] Ramanujan RV. Phase transformations in γ based titanium aluminides. International Materials Reviews. 2000;45(6):217-40 DOI: http://dx.doi.org/10.1179/095066000101528377.
[6] Tan Y, Wang Y, You X, Liu H, Li P. Effect of Solution Heat Treatment on the Microstructure and Hardness of theTi-48Al-2Cr-2Nb Alloy Prepared by Electron Beam Smelting. Journal of Materials Engineering and Performance. 2021;31:1387–96 DOI: http://dx.doi.org/10.1007/s11665-021-06231-z.
[7] Ahmadi M, Hosseini SR, Hadavi SMM. Effects of Heat Treatment on Microstructural Modification of As-Cast Gamma-TiAl Alloy. Journal of Materials Engineering and Performance. 2016;25(6):2138-46 DOI: http://dx.doi.org/10.1007/s11665-016-2067-7.
[8] Kothari K, Radhakrishnan R, Wereley NM. Advances in gamma titanium aluminides and their manufacturing techniques. Progress in Aerospace Sciences. 2012;55:1-16 DOI: http://dx.doi.org/10.1016/j.paerosci.2012.04.001.
[9] Jian-Chao H, Shu-Long X, Tian Jing C, Xu Y-Y, Wang L-J, Jia X-P, et al. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Metals. 2016;35:26-34 DOI: http://dx.doi.org/10.1007/s12598-015-0626-y.
[10] Kościelna A, Szkliniarz W. Effect of cyclic heat treatment parameters on the grain refinement of Ti–48Al–2Cr–2Nb alloy. Materials Characterization. 2009;60(10):1158-62 DOI: http://dx.doi.org/10.1016/j.matchar.2009.03.008.
[11] Charpentier M, Hazotte A, Daloz D. Lamellar transformation in near-Gamma TiAl alloys—Quantitative analysis of kinetics and microstructure. Materials Science and Engineering A. 2008;491:321-30 DOI: http://dx.doi.org/10.1016/j.msea.2008.02.009.
[12] Gao Z, Yang J, Wu Y, Hu R, Kim S-L, Kim Y-W. A Newly Generated Nearly Lamellar Microstructure in Cast Ti-48Al-2Nb-2Cr Alloy for High-Temperature Strengthening. Metallurgical and Materials Transactions A. 2019;50:5839–52 DOI: http://dx.doi.org/10.1007/s11661-019-05491-8.
[13] Rezaei H, Morakabati M, Momeni A. Evaluation of the Effect of Heat Treatment on Structural Changes and Mechanical Properties of Ti-48Al-2Cr-2Nb Intermetallic. Founding Research Journal. 2022;6(2):125-32 DOI: http://dx.doi.org/10.22034/FRJ.2023.384529.1173.
[14] Shih D, Scarr G. High-Temperature Deformation Behavior of the γ Alloy Ti-48Ai-2Cr-2Nb. MRS Online Proceedings Library. 1990;213:727-32.
[15] Leyens C, Peters M. Titanium and titanium alloys - Fundamentals and applications: Wiley‐VCH Verlag GmbH & Co. KGaA; 2003 DOI: http://dx.doi.org/10.1002/3527602119.
[16] Semiatin SL, Seetharaman V, Weiss I. Hot workability of titanium and titanium aluminide alloys—an overview. Materials Science and Engineering A. 1998;243:1-24 DOI: http://dx.doi.org/10.1016/S0921-5093(97)00776-4.
[17] Wang JN, Yang J, Xia Q, Wang Y. On the grain size refinement of TiAl alloys by cyclic heat treatment. Materials Science and Engineering A. 2002;329:118-23 DOI: http://dx.doi.org/10.1016/S0921-5093(01)01543-X.
[18] Cupid D. Thermodynamic Assessment of the Ti-al-nb, Ti-al-cr, and Ti-al-mo Systems Gainesville: University of Florida; 2009 DOI: http://dx.doi.org/10.3139/146.110015.
[19] Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics. 2000;8((9-11)):1283-312 DOI: http://dx.doi.org/10.1016/S0966-9795(00)00036-4.
[20] Huang L. Microstructural Control and Alloy Design of the Ti-Al-Nb-W-B Alloys Knoxville university of Tennessee; 2008 DOI: http://dx.doi.org/10.1007/s11661-007-9113-x.
[21] Szkliniarz A. Grain Refinement of Ti-48Al-2Cr-2Nb Alloy by Heat Treatment Method. Solid State Phenomena. 2012;191:221-34 DOI: http://dx.doi.org/10.4028/www.scientific.net/ssp.191.221.
[22] Yim S, Bian H, Aoyagi K, Chiba A. Effect of multi-stage heat treatment on mechanical properties and microstructure transformation of Ti–48Al–2Cr–2Nb alloy. Materials Science and Engineering: A. 2021;816 DOI: http://dx.doi.org/10.1016/j.msea.2021.141321.
[23] Bibhanshu N, Suwas S. Globularisation of α2 phase in (α2 + γ) two-phase lamellar titanium aluminide by thermal cycling. Materials Letters. 2021;292:1-4 DOI: http://dx.doi.org/10.1016/j.matlet.2021.129617.
[24] Voort GFV. Handbook metallography and microstructurs USA: ASM International; 2004. DOI: http://dx.doi.org/10.31399/asm.hb.v09.a0003800.
[25] ASTM E 112: Standard test methods for determining average grain size. 2004.
[26] Cao S, Xiao S, Chen Y, Xu L, Wang X, Han J, Jia Y. Phase transformations of the L12-Ti3Al phase in γ-TiAl alloy. Materials & Design. 2017;121:61-8. DOI: http://dx.doi.org/10.1016/j.matdes.2017.02.047.
[27] Maruyama K, Yamaguchi M, Suzuki G, Zhu H, Kim HY, Yoo MH. Effects of lamellar boundary structural change on lamellar size hardening in TiAl alloy. Acta Materialia. 2004;52(17):5185-94 DOI: http://dx.doi.org/10.1016/j.actamat.2004.07.029.
[28] Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. second ed: Elsevier; 2004.
[29] Franzén SF, Karlsson J. Titanium Aluminide Manufactured by Electron Beam Melting. Gothenburg, Sweden: Chalmers University of Technology; 2010 DOI: https://hdl.handle.net/20.500.12380/127716.