[1] Ayamga M, Akaba S, Nyaaba AA. Multifaceted applicability of drones: A review. Technological Forecasting and Social Change. 2021;167:120677. DOI: https://doi.org/10.1016/J.TECHFORE.2021.120677.
[2] Rezaei P. Investigating the Role of UAVs in the Military Strategy of Countries Using the Strategic Teachings of Sun Tzo and Clausewitz: A Case Study of the Islamic Republic of Iran. Defense Policy. 2023;32(122):11-42.
DOR: https://dorl.net/dor/20.1001.1.26762935.1391.3.4.6.5.
[3] Chaturvedi SK, Sekhar S, Kumar S, Subbarao PMV, Chandra H. Comparative review study of military and civilian unmanned aerial vehicles (UAVs). INCAS bulletin. 2019;11(3):181-182. DOI: https://doi.org/10.13111/2066-8201.2019.11.3.16.
[5] Ayamga M, Tekinerdogan B, Kassahun A. Exploring the challenges posed by regulations for the use of drones in agriculture in the African context. Land. 2021;10(2):164. DOI: https://doi.org/10.3390/LAND10020164.
[6] Scott J, Scott C. Drone delivery models for healthcare. In Proceedings of the 50th Hawaii International Conference on System Sciences. 2017;3297-3304. DOI: https://doi.org/10.24251/HICSS.2017.399.
[7] Koetsier J. Drone Delivery Is Live Today, And It’s 90% Cheaper Than Car-Based Services. Forbes. com. 2021.
[8] Kellermann R, Biehle T, Fischer L. Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Perspectives. 2020;4:100088. DOI: https://doi.org/10.1016/J.TRIP.2019.100088.
[9] Goasduff L. Gartner Forecasts Global IoT Enterprise Drone Shipments to Grow 50% in 2020. Gartner press release. 2019.
[10] Kapustina L, Vyazovskaya V, Kondratenko Y, Vlasov A. The global drone market: main development trends. In SHS Web of Conferences. 2021;93:04016. EDP Sciences. DOI: https://doi.org/10.1051/shsconf/20219304016.
[11] Goh GD, Yap YL, Agarwala S, Yeong WY. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology. 2017;63:140-151. DOI: https://doi.org/10.1016/J.AST.2016.12.019.
[12] Jandyal A, Chhabra I, Agarwal V, Gaurav R, Hussain CM. 3D printing–A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers. 2022;3:33-42. DOI: https://doi.org/10.1016/J.SUSOC.2021.09.004.
[13] Ferraro M, Lock A, Scanlan JP, Keane AJ. Design and flight test of a civil unmanned aerial vehicle for maritime patrol: the use of 3D-printed structural components. In 27th International Conference on Unmanned Air Vehicle Systems. 2014;1-12.
[14] Moon SK, Tan YE, Hwang J, Yoon YJ. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. International Journal of Precision Engineering and Manufacturing-Green Technology. 2014;1:223-228. DOI: https://doi.org/10.1007/s40684-014-0028-x.
[15] Mallikarjuna B, Kumar A, Rao BVS, Srinivas C, Kumar GN. A review on the melt extrusion-based fused deposition modeling (FDM): background, materials, process parameters and military applications. International Journal on Interactive Design and Manufacturing (IJIDeM). 2023;1-15. DOI: https://doi.org/10.1007/s12008-023-01150-y.
[16] Klippstein H, Diaz De Cerio Sanchez A, Hassanin H, Zweiri Y, Seneviratne L. Fused deposition modeling for unmanned aerial vehicles (UAVs): a review. Advanced Engineering Materials. 2018;20(2):1700552. DOI: https://doi.org/10.1002/ADEM.201700552.
[17] Ali K, Tawafik M, Jameel A. Quadcopter topology optimization based on impact analysis. In AIP Conference Proceedings. 2023;2977(1):030022. DOI: https://doi.org/10.1063/5.0145650.
[18] Lógó J, Ismail H. Milestones in the 150-year history of topology optimization: A review. Computer Assisted Methods in Engineering and Science. 2020;27(2-3):97-132. DOI: https://doi.org/10.24423/cames.329.
[19] Brennan J. Years of Topology Optimization: Birth and Maturation of a Disruptive Technology. Altair Hyperworks website. 2014.
[20] Zhu JH, Zhang WH, Xia L. Topology optimization in aircraft and aerospace structures design. Archives of computational methods in engineering. 2016;23:595-622. DOI: https://doi.org/10.1007/S11831-015-9151-2.
[21] Bojczuk D, Szteleblak W. Optimization of layout and shape of stiffeners in 2D structures. Computers & structures. 2008;86(13-14):1436-1446. DOI: https://doi.org/10.1016/J.COMPSTRUC.2007.05.005.
[22] Hansen LU, Horst P. Multilevel optimization in aircraft structural design evaluation. Computers & Structures. 2008;86(1-2):104-118. DOI: https://doi.org/10.1016/J.COMPSTRUC.2007.05.021.
[23] Joo JJ, Reich GW, Westfall JT. Flexible skin development for morphing aircraft applications via topology optimization. Journal of Intelligent Material Systems and Structures. 2009;20(16):1969-1985. DOI: https://doi.org/10.1177/1045389X09343026.
[24] Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In 22nd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2011. 2011;348-362.
[25] Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP annals. 2016;65(2):737-760. DOI: https://doi.org/10.1016/J.CIRP.2016.05.004.
[26] Boothroyd G. Design for manufacture and assembly: The Boothroyd-Dewhurst experience. In Design for X: Concurrent engineering imperatives. Springer. 1996;19-40. DOI: https://doi.org/10.1007/978-94-011-3985-4_2.
[27] Goh GL, Ma J, Chua KLF, Shweta A, Yeong WY, Zhang YF. Additively manufactured multi-material free-form structure with printed electronics. The International Journal of Advanced Manufacturing Technology. 2018;94:1309-1316. DOI: https://doi.org/10.1007/S00170-017-0972-Z/METRICS.
[28] Zegard T, Paulino GH. Bridging topology optimization and additive manufacturing. Structural and Multidisciplinary Optimization. 2016;53:175-192. DOI: https://doi.org/10.1007/S00158-015-1274-4/FIGURES/22.
[29] Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CCL, Cheng L. Current and future trends in topology optimization for additive manufacturing. Structural and multidisciplinary optimization. 2018;57(6):2457-2483. DOI: https://doi.org/10.1007/S00158-018-1994-3.
[30] Cheng L, Bai J, To AC. Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Computer Methods in Applied Mechanics and Engineering. 2018;332:408-439. DOI: https://doi.org/10.1016/J.CMA.2017.12.024.
[31] Takezawa A, Yaji K, Kitamura M, Zhu S. Method to optimize an additively-manufactured functionally-graded lattice structure for effective liquid cooling. Additive Manufacturing. 2019;28:285-298. DOI: https://doi.org/10.1016/J.ADDMA.2019.04.004.
[32] Nvss S, Esakki B, Yang LJ, Udayagiri C, Vepa KS. Design and development of unibody quadcopter structure using optimization and additive manufacturing techniques. Designs. 2022;6(1):8 DOI: https://doi.org/10.3390/designs6010008.
[33] Martinez Leon A, Rukavitsyn A, Jatsun S. UAV airframe topology optimization. In Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) Volume I 6. Springer. 2021;418-427. DOI: https://doi.org/10.1007/978-3-030-54814-8_41.
[34] Sagar N, Ganesan A, Hariharan P, Prasanth A, Premkumar R. Multistage mass optimization of a quadcopter frame. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering: Proceedings of I-DAD 2020. Springer. 2021;183-194. DOI: https://doi.org/10.1007/978-981-15-6619-6_19.
[35] Nvss S, Esakki B, Udayagiri C, Thondiyath A. Design and development of unibody quadcopter structure using optimization and additive manufacturing techniques. Designs. 2022;6(1):8. DOI: https://doi.org/10.3390/designs6010008.
[36] Al-Haddad LA, Jaber AA, Giernacki W, Khan ZH, Ali KM, Tawafik MA, Humaidi AJ. Quadcopter unmanned aerial vehicle structural design using an integrated approach of topology optimization and additive manufacturing. designs. 2024;8(3):58. DOI: https://doi.org/10.3390/designs8030058.
[37] Gutierrez S, Ocampo J, Narváez CA. Topological optimization, generative design and validation of drone structures. In AIAA SCITECH 2023 Forum. 2023;0964. DOI: https://doi.org/10.2514/6.2023-0964.
[38] Marino SO. Generative design for 3d printing of advanced aerial drones. Doctoral dissertation, Toronto Metropolitan University. 2023.
[39] Ghorbani Ahmed, Jahormi Amin. Spectral analysis of airplane flight tests using flight simulation. Journal of Aerospace Mechanics. 1384;1(2):34-42.
[40] Durgashyam K, Indra Reddy M, Balakrishna A, Satyanarayana K. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method. Materials Today: Proceedings. 2019;18:2052-2059. DOI: https://doi.org/10.1016/J.MATPR.2019.06.082.
[41] Miller M, Uria I, Monir S, Day RJ, Jones M, Vagapov Y. A review of topology optimisation software for additive manufacturing: capability comparison. In 2023 15th IEEE International Conference on Industry Applications (INDUSCON). 2023;796-801. DOI: https://doi.org/10.1109/INDUSCON58041.2023.10374974.
[42] Redwood B, Schffer F, Garret B. The 3D printing handbook: technologies, design and applications. 3D Hubs. 2017.
[44] Pandžić A, Hodžić D. Tensile Mechanical properties comparation of petg, asa and pla-strongman FDM printed materials with and without infill structure. In Proceedings of the 33rd DAAAM International Symposium. 2022;0223-0230. DOI: https://doi.org/10.2507/33RD.DAAAM.PROCEEDINGS.031.
[45] Sepahi MT, Mortezaei M, Zarringhalam H, Salahinejad E, Haghbin A. Mechanical properties of 3D-printed parts made of polyethylene terephthalate glycol. Journal of Materials Engineering and Performance. 2021;30:6851-6861. DOI: https://doi.org/10.1007/S11665-021-06032-4/METRICS.
[46] Guessasma S, Belhabib S, Nouri H. Printability and tensile performance of 3D printed polyethylene terephthalate glycol using fused deposition modelling. Polymers. 2019;11(7):1220. DOI: https://doi.org/10.3390/POLYM11071220.
[47] Balayan A, Mallick R, Dwivedi S, Saxena S, Haorongbam B, Sharma A. Optimal Design of Quadcopter Chassis Using Generative Design and Lightweight Materials to Advance Precision Agriculture. Machines. 2024;12(3):187. DOI: https://doi.org/10.3390/machines12030187.
[48] Castiblanco JM, Peña D, Rueda-Bayona JG, Pena-Sanchez Y, Lopez O. Experimental study on the dynamic behaviour of drones designed for racing competitions. International Journal of Micro Air Vehicles. 2021;13:17568293211005757. DOI: https://doi.org/10.1177/17568293211005757.
[49] Bright J, Ganesh R, Rajamurugan G, Vijayraghavan M. Optimization of quadcopter frame using generative design and comparison with DJI F450 drone frame. In IOP conference series: Materials Science and Engineering. 2021;1012(1):012019. DOI: https://doi.org/10.1088/1757-899X/1012/1/012019.
[50] Hassanalian M, Abdelkefi A. Classifications, applications, and design challenges of drones: A review. Progress in Aerospace sciences. 2017;91:99-131. DOI: https://doi.org/10.1016/J.PAEROSCI.2017.04.003.
[51] Karbasian M, Shahibana M. Design of an Industrial Production Line in a Buried Secure Space (Unmanned Aerial Vehicle Production). Journal of Advanced Defense Science & Technology. 2012;3(4):315-328.
DOR: https://dorl.net/dor/20.1001.1.26762935.1391.3.4.6.5.
[52] Small U. Aviation Rulemaking Committee (ARC). Comprehensive Set of Recommendations for sUAS Regulatory Development. 2009;1.