طراحی و شبیه‌سازی میکروپهپاد با استفاده از بهینه‌سازی توپولوژی و فناوری ساخت افزودنی

نوع مقاله : مکانیک جامدات

نویسندگان

1 نویسنده مسئول: استادیار دانشکده مهندسی و پرواز، دانشگاه افسری امام علی، تهران، ایران

2 استادیار دانشکده مهندسی و پرواز، دانشگاه افسری امام علی، تهران، ایران

چکیده

گسترش قابلیت‌ها و توسعه روزافزون فناوری ساخت افزودنی، سبب کاهش هزینه‌ها در تولید محصولات سفارشی‌شده است و همچنین امکان تولید ساختارهای پیچیده برای میکروپهپادها را فراهم کرده است. وزن عموماً یکی از اصلی‌ترین ویژگی‌های طراحی میکروپهپادها است، اما اغلب به‌عنوان معاوضه‌ای در برابر دوام و سایر قابلیت‌ها می‌باشد. بااین‌حال، ساختارهای فوق سبک می‌توانند با استفاده از ساخت افزودنی و بهینه‌سازی توپولوژی، بدون به خطر انداختن یکپارچگی سازه، تحقق یابند. این مطالعه به بررسی استفاده از این دو فناوری برای طراحی و ساخت میکروپهپادهای سبک‌وزن بهینه‌سازی شده می‌پردازد. طراحی مولد با استفاده از الگوریتم‌های هوش مصنوعی، بهینه‌سازی توپولوژی را برای توزیع بار بهینه انجام می‌دهد و کارایی خود را در شبیه‌سازی‌های مختلف نشان داده است. پژوهش حاضر به پیچیدگی‌های طراحی میکروپهپاد و وابستگی متقابل بین هندسه، روش ساخت و مواد پرداخته است. در این پژوهش، قاب میکروپهپاد از نوع مربعی، با روش چاپ سه‌بعدی رسوب ذوب‌شده (FDM) و فیلامنت PETG ساخته شد. خواص مطلوب ماده انتخاب‌شده از طریق آزمایش مکانیکی و بررسی مطالعات پیشین مشخص گردید. سپس، بهینه‌سازی توپولوژی برای ایجاد ساختار بدنه سبک‌وزن با پیکربندی X انجام گرفت. طرح بهینه‌شده چاپ سه‌بعدی شد و از طریق آزمون بارگذاری برای اعتبارسنجی نتایج شبیه‌سازی المان محدود ارزیابی گردید. نتایج آزمایش‌ها و شبیه‌سازی‌ها نشان داد که ترکیب بهینه‌سازی توپولوژی و چاپ سه‌بعدی می‌تواند به‌طور ایمن و قابل‌اعتماد برای طراحی و تولید سریع میکروپهپادها به کار رود. مدل بهینه‌سازی شده نهایی که توسط ساخت افزودنی تولید شد، قادر به تحمل وزنی معادل 100 برابر جرم خود بود که نشان‌دهنده بهینه‌تر بودن این مدل نسبت به طرح‌های مطالعات پیشین است.

تازه های تحقیق

  • ساختارهای فوق سبک را می‌توان با استفاده از بهینه‌سازی توپولوژی طراحی و توسط ساخت افزودنی تولید نمود.
  • برتری خواص ماده PETG برای ساخت بدنه میکروپهپاد از طریق آزمایش‌های تجربی حاصل شد.
  • مدل‌بهینه‌سازی‌شده بلند کردن وزنه‌ای معادل 100 برابر جرم خود را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Simulation of Micro-UAV using Topology Optimization and Additive Manufacturing Technology

نویسندگان [English]

  • Seyed Mostafa Mirtabaei 1
  • Aliasghar Naderi 2
1 Corresponding author: Assistant Professor, Faculty of Engineering and Aviation, Imam Ali Officer University, Tehran, Iran
2 Assistant Professor, Faculty of Engineering and Aviation, Imam Ali Officer University, Tehran, Iran
چکیده [English]

The expansion of capabilities and the continuous development of additive manufacturing technology have led to a reduction in costs for custom product manufacturing and have enabled the production of complex structures for micro-drones. Weight is generally one of the primary design features of micro-drones, often considered a trade-off against durability and other functionalities. However, ultra-lightweight structures can be achieved through additive manufacturing and topology optimization without compromising structural integrity. This study examines the use of these two technologies for designing and fabricating optimized lightweight micro-drones. Generative design using artificial intelligence algorithms performs topology optimization for optimal load distribution, demonstrating its efficiency in various simulations. This research addresses the complexities of micro-drone design and the interdependence between geometry, manufacturing methods, and materials. In this study, a square-frame micro-drone was constructed using Fused Deposition Modeling (FDM) with PETG filament. The selected material's properties were determined through mechanical testing and literature review. Subsequently, topology optimization was conducted to create a lightweight body structure with an X configuration. The optimized design was 3D printed and validated through load testing to verify finite element simulation results. The experimental and simulation results indicated that the combination of topology optimization and 3D printing can be safely and reliably used for the rapid design and production of micro-drones. The final optimized model produced through additive manufacturing could withstand a load 100 times its own weight, demonstrating superior performance compared to previous designs.

کلیدواژه‌ها [English]

  • Topology optimization
  • Micro-UAV
  • Generative design
  • 3D-printing
  • Additive manufacturing


Smiley face

[1] Ayamga M, Akaba S, Nyaaba AA. Multifaceted applicability of drones: A review. Technological Forecasting and Social Change. 2021;167:120677. DOI: https://doi.org/10.1016/J.TECHFORE.2021.120677.
[2] Rezaei P. Investigating the Role of UAVs in the Military Strategy of Countries Using the Strategic Teachings of Sun Tzo and Clausewitz: A Case Study of the Islamic Republic of Iran. Defense Policy. 2023;32(122):11-42. DOR: https://dorl.net/dor/20.1001.1.26762935.1391.3.4.6.5.
[3] Chaturvedi SK, Sekhar S, Kumar S, Subbarao PMV, Chandra H. Comparative review study of military and civilian unmanned aerial vehicles (UAVs). INCAS bulletin. 2019;11(3):181-182. DOI: https://doi.org/10.13111/2066-8201.2019.11.3.16.
[4] Hajilo M, Farzaneh H, Bagheri Dolatabadi A, Ghorbani M. Research paper: Investigating the role of small birds in future wars. Strategic Defense Studies. 2022;20(87):159-182. DOR: https://dorl.net/dor/20.1001.1.20084897.1401.20.87.7.3.
[5] Ayamga M, Tekinerdogan B, Kassahun A. Exploring the challenges posed by regulations for the use of drones in agriculture in the African context. Land. 2021;10(2):164. DOI: https://doi.org/10.3390/LAND10020164.
[6] Scott J, Scott C. Drone delivery models for healthcare. In Proceedings of the 50th Hawaii International Conference on System Sciences. 2017;3297-3304. DOI: https://doi.org/10.24251/HICSS.2017.399.
[7] Koetsier J. Drone Delivery Is Live Today, And It’s 90% Cheaper Than Car-Based Services. Forbes. com. 2021.
[8] Kellermann R, Biehle T, Fischer L. Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Perspectives. 2020;4:100088. DOI: https://doi.org/10.1016/J.TRIP.2019.100088.
[9] Goasduff L. Gartner Forecasts Global IoT Enterprise Drone Shipments to Grow 50% in 2020. Gartner press release. 2019.
[10] Kapustina L, Vyazovskaya V, Kondratenko Y, Vlasov A. The global drone market: main development trends. In SHS Web of Conferences. 2021;93:04016. EDP Sciences. DOI: https://doi.org/10.1051/shsconf/20219304016.
[11] Goh GD, Yap YL, Agarwala S, Yeong WY. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology. 2017;63:140-151. DOI: https://doi.org/10.1016/J.AST.2016.12.019.
[12] Jandyal A, Chhabra I, Agarwal V, Gaurav R, Hussain CM. 3D printing–A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers. 2022;3:33-42. DOI: https://doi.org/10.1016/J.SUSOC.2021.09.004.
[13] Ferraro M, Lock A, Scanlan JP, Keane AJ. Design and flight test of a civil unmanned aerial vehicle for maritime patrol: the use of 3D-printed structural components. In 27th International Conference on Unmanned Air Vehicle Systems. 2014;1-12.
[14] Moon SK, Tan YE, Hwang J, Yoon YJ. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. International Journal of Precision Engineering and Manufacturing-Green Technology. 2014;1:223-228. DOI: https://doi.org/10.1007/s40684-014-0028-x.
[15] Mallikarjuna B, Kumar A, Rao BVS, Srinivas C, Kumar GN. A review on the melt extrusion-based fused deposition modeling (FDM): background, materials, process parameters and military applications. International Journal on Interactive Design and Manufacturing (IJIDeM). 2023;1-15. DOI: https://doi.org/10.1007/s12008-023-01150-y.
[16] Klippstein H, Diaz De Cerio Sanchez A, Hassanin H, Zweiri Y, Seneviratne L. Fused deposition modeling for unmanned aerial vehicles (UAVs): a review. Advanced Engineering Materials. 2018;20(2):1700552. DOI: https://doi.org/10.1002/ADEM.201700552.
[17] Ali K, Tawafik M, Jameel A. Quadcopter topology optimization based on impact analysis. In AIP Conference Proceedings. 2023;2977(1):030022. DOI: https://doi.org/10.1063/5.0145650.
[18] Lógó J, Ismail H. Milestones in the 150-year history of topology optimization: A review. Computer Assisted Methods in Engineering and Science. 2020;27(2-3):97-132. DOI: https://doi.org/10.24423/cames.329.
[19] Brennan J. Years of Topology Optimization: Birth and Maturation of a Disruptive Technology. Altair Hyperworks website. 2014.
[20] Zhu JH, Zhang WH, Xia L. Topology optimization in aircraft and aerospace structures design. Archives of computational methods in engineering. 2016;23:595-622. DOI: https://doi.org/10.1007/S11831-015-9151-2.
[21] Bojczuk D, Szteleblak W. Optimization of layout and shape of stiffeners in 2D structures. Computers & structures. 2008;86(13-14):1436-1446. DOI: https://doi.org/10.1016/J.COMPSTRUC.2007.05.005.
[22] Hansen LU, Horst P. Multilevel optimization in aircraft structural design evaluation. Computers & Structures. 2008;86(1-2):104-118. DOI: https://doi.org/10.1016/J.COMPSTRUC.2007.05.021.
[23] Joo JJ, Reich GW, Westfall JT. Flexible skin development for morphing aircraft applications via topology optimization. Journal of Intelligent Material Systems and Structures. 2009;20(16):1969-1985. DOI: https://doi.org/10.1177/1045389X09343026.
[24] Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In 22nd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2011. 2011;348-362.
[25] Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP annals. 2016;65(2):737-760. DOI: https://doi.org/10.1016/J.CIRP.2016.05.004.
[26] Boothroyd G. Design for manufacture and assembly: The Boothroyd-Dewhurst experience. In Design for X: Concurrent engineering imperatives. Springer. 1996;19-40. DOI: https://doi.org/10.1007/978-94-011-3985-4_2.
[27] Goh GL, Ma J, Chua KLF, Shweta A, Yeong WY, Zhang YF. Additively manufactured multi-material free-form structure with printed electronics. The International Journal of Advanced Manufacturing Technology. 2018;94:1309-1316. DOI: https://doi.org/10.1007/S00170-017-0972-Z/METRICS.
[28] Zegard T, Paulino GH. Bridging topology optimization and additive manufacturing. Structural and Multidisciplinary Optimization. 2016;53:175-192. DOI: https://doi.org/10.1007/S00158-015-1274-4/FIGURES/22.
[29] Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CCL, Cheng L. Current and future trends in topology optimization for additive manufacturing. Structural and multidisciplinary optimization. 2018;57(6):2457-2483. DOI: https://doi.org/10.1007/S00158-018-1994-3.
[30] Cheng L, Bai J, To AC. Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Computer Methods in Applied Mechanics and Engineering. 2018;332:408-439. DOI: https://doi.org/10.1016/J.CMA.2017.12.024.
[31] Takezawa A, Yaji K, Kitamura M, Zhu S. Method to optimize an additively-manufactured functionally-graded lattice structure for effective liquid cooling. Additive Manufacturing. 2019;28:285-298. DOI: https://doi.org/10.1016/J.ADDMA.2019.04.004.
[32] Nvss S, Esakki B, Yang LJ, Udayagiri C, Vepa KS. Design and development of unibody quadcopter structure using optimization and additive manufacturing techniques. Designs. 2022;6(1):8 DOI: https://doi.org/10.3390/designs6010008.
[33] Martinez Leon A, Rukavitsyn A, Jatsun S. UAV airframe topology optimization. In Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) Volume I 6. Springer. 2021;418-427. DOI: https://doi.org/10.1007/978-3-030-54814-8_41.
[34] Sagar N, Ganesan A, Hariharan P, Prasanth A, Premkumar R. Multistage mass optimization of a quadcopter frame. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering: Proceedings of I-DAD 2020. Springer. 2021;183-194. DOI: https://doi.org/10.1007/978-981-15-6619-6_19.
[35] Nvss S, Esakki B, Udayagiri C, Thondiyath A. Design and development of unibody quadcopter structure using optimization and additive manufacturing techniques. Designs. 2022;6(1):8. DOI: https://doi.org/10.3390/designs6010008.
[36] Al-Haddad LA, Jaber AA, Giernacki W, Khan ZH, Ali KM, Tawafik MA, Humaidi AJ. Quadcopter unmanned aerial vehicle structural design using an integrated approach of topology optimization and additive manufacturing. designs. 2024;8(3):58. DOI: https://doi.org/10.3390/designs8030058.
[37] Gutierrez S, Ocampo J, Narváez CA. Topological optimization, generative design and validation of drone structures. In AIAA SCITECH 2023 Forum. 2023;0964. DOI: https://doi.org/10.2514/6.2023-0964.
[38] Marino SO. Generative design for 3d printing of advanced aerial drones. Doctoral dissertation, Toronto Metropolitan University. 2023.
[39] Ghorbani Ahmed, Jahormi Amin. Spectral analysis of airplane flight tests using flight simulation. Journal of Aerospace Mechanics. 1384;1(2):34-42.
[40] Durgashyam K, Indra Reddy M, Balakrishna A, Satyanarayana K. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method. Materials Today: Proceedings. 2019;18:2052-2059. DOI: https://doi.org/10.1016/J.MATPR.2019.06.082.
[41] Miller M, Uria I, Monir S, Day RJ, Jones M, Vagapov Y. A review of topology optimisation software for additive manufacturing: capability comparison. In 2023 15th IEEE International Conference on Industry Applications (INDUSCON). 2023;796-801. DOI: https://doi.org/10.1109/INDUSCON58041.2023.10374974.
[42] Redwood B, Schffer F, Garret B. The 3D printing handbook: technologies, design and applications. 3D Hubs. 2017.
[43] Hasani M, Akbari D, Behravesh AH, Faraji Kalajahi P. Non-destructive evaluation of artificial defects in FDM printed parts using pulse thermography. Journal of Aerospace Mechanics. 2022;18(4):77-87. DOR: https://dorl.net/dor/20.1001.1.26455323.1401.18.4.6.0.
[44] Pandžić A, Hodžić D. Tensile Mechanical properties comparation of petg, asa and pla-strongman FDM printed materials with and without infill structure. In Proceedings of the 33rd DAAAM International Symposium. 2022;0223-0230. DOI: https://doi.org/10.2507/33RD.DAAAM.PROCEEDINGS.031.
[45] Sepahi MT, Mortezaei M, Zarringhalam H, Salahinejad E, Haghbin A. Mechanical properties of 3D-printed parts made of polyethylene terephthalate glycol. Journal of Materials Engineering and Performance. 2021;30:6851-6861. DOI: https://doi.org/10.1007/S11665-021-06032-4/METRICS.
[46] Guessasma S, Belhabib S, Nouri H. Printability and tensile performance of 3D printed polyethylene terephthalate glycol using fused deposition modelling. Polymers. 2019;11(7):1220. DOI: https://doi.org/10.3390/POLYM11071220.
[47] Balayan A, Mallick R, Dwivedi S, Saxena S, Haorongbam B, Sharma A. Optimal Design of Quadcopter Chassis Using Generative Design and Lightweight Materials to Advance Precision Agriculture. Machines. 2024;12(3):187. DOI: https://doi.org/10.3390/machines12030187.
[48] Castiblanco JM, Peña D, Rueda-Bayona JG, Pena-Sanchez Y, Lopez O. Experimental study on the dynamic behaviour of drones designed for racing competitions. International Journal of Micro Air Vehicles. 2021;13:17568293211005757. DOI: https://doi.org/10.1177/17568293211005757.
[49] Bright J, Ganesh R, Rajamurugan G, Vijayraghavan M. Optimization of quadcopter frame using generative design and comparison with DJI F450 drone frame. In IOP conference series: Materials Science and Engineering. 2021;1012(1):012019. DOI: https://doi.org/10.1088/1757-899X/1012/1/012019.
[50] Hassanalian M, Abdelkefi A. Classifications, applications, and design challenges of drones: A review. Progress in Aerospace sciences. 2017;91:99-131. DOI: https://doi.org/10.1016/J.PAEROSCI.2017.04.003.
[51] Karbasian M, Shahibana M. Design of an Industrial Production Line in a Buried Secure Space (Unmanned Aerial Vehicle Production). Journal of Advanced Defense Science & Technology. 2012;3(4):315-328. DOR: https://dorl.net/dor/20.1001.1.26762935.1391.3.4.6.5.
[52] Small U. Aviation Rulemaking Committee (ARC). Comprehensive Set of Recommendations for sUAS Regulatory Development. 2009;1.
دوره 20، شماره 3 - شماره پیاپی 77
شماره پیاپی 77، فصلنامه پاییز
آذر 1403
صفحه 59-74
  • تاریخ دریافت: 14 خرداد 1403
  • تاریخ بازنگری: 14 تیر 1403
  • تاریخ پذیرش: 30 تیر 1403
  • تاریخ انتشار: 01 آذر 1403