[1] Abdolkarimi, ES, Mosavi, MR, Rafatnia, S, Martín, D. A hybrid data fusion approach to AI-assisted indirect centralized integrated SINS/GNSS navigation system during GNSS outage. IEEE Access. 2021; 9: 100827-100838. DOI: https://doi.org/10.1109/ACCESS.2021.3096422.
[2] Keighobadi J, Faraji J, Janabi-Sharifi F, Hamed MA. Design and experimental evaluation of block-pulse functions and Legendre polynomials observer for attitude-heading reference system. ISA transactions. 2021; 116, 232-244. DOI: https://doi.org/10.1016/j.isatra.2021.01.027.
[3] Rafatnia S, Mirzaei M. Estimation of reliable vehicle dynamic model using IMU/GNSS data fusion for stability controller design. Mechanical Systems and Signal Processing. 2022; 168: 108593. DOI: https://doi.org/10.1016/j.ymssp.2021.108593.
[4] Rafatnia S, Nourmohammadi H, Keighobadi J, Badamchizadeh MA. In-move aligned SINS/GNSS system using recurrent wavelet neural network (RWNN)-based integration scheme. Mechatronics. 2018; 54: 155-165. DOI: https://doi.org/10.1016/j.mechatronics.2018.08.001.
[5] Ghasrizadeh R, Nikkhah AA. Improved Spoofing Loosely Coupled INS/GPS with Steady State Kalman Matrix Gain. Space Science and Technology. 2023; 16(3): 37-49. DOI: https://doi.org/10.30699/jsst.2023.1425.
[6] Jafari M, Sangary A, Roshanyan J. Integrated inertial navigation with positioning system for increasing orbital module navigation accuracy. Space Science and Technology. 2012; 5(3): 11-19.
[7] Khankalantary S, Rafatnia S, Mohammadkhani H. An adaptive constrained type-2 fuzzy Hammerstein neural network data fusion scheme for low-cost SINS/GNSS navigation system. Applied Soft Computing. 2020; 86: 105917. DOI: https://doi.org/10.1016/j.asoc.2019.105917.
[8] Nourmohammadi H, Keighobadi J. Decentralized INS/GNSS system with MEMS-grade inertial sensors using QR-factorized CKF. IEEE Sensors Journal. 2017; 17(11): 3278-3287. DOI: https://doi.org/10.1109/JSEN.2017.2693246.
[9] Hu G, Gao S, Zhong Y. A derivative UKF for tightly coupled INS/GPS integrated navigation. ISA transactions. 2015; 56: 135-144. DOI: https://doi.org/10.1016/j.isatra.2014.10.006.
[10] Park G. Optimal vehicle position estimation using adaptive unscented Kalman filter based on sensor fusion. Mechatronics. 2024; 99: 103144. DOI: https://doi.org/10.1016/j.mechatronics.2024.103144.
[11] Zhou J, Knedlik S, Loffeld O. INS/GPS tightly-coupled integration using adaptive unscented particle filter. The Journal of Navigation. 2010; 63(3): 491-511. DOI: https://doi.org/10.1017/S0373463310000068.
[12] Nassar S, El-Sheimy N. INS error model improvement for enhanced INS/GPS navigation during GPS signal blockage periods. Survey Review. 2006; 38(301): 563-572. DOI: https://doi.org/10.1179/sre.2006.38.301.563.
[13] Li H, Yang G, Cai Q. Stochastic characteristic simulation method of inertial devices based on Allan variance matching. IEEE Sensors Letters. 2024. DOI: https://doi.org/10.1109/LSENS.2024.3414612.
[14] Rafatnia S, Nourmohammadi H, Keighobadi J. Fuzzy-adaptive constrained data fusion algorithm for indirect centralized integrated SINS/GNSS navigation system. Gps Solutions, 2019; 23(3): 62. DOI: https://doi.org/10.1007/s10291-019-0845-z.
[15] Abdolkarimi ES, Abaei G, Mosavi MR. A wavelet-extreme learning machine for low-cost INS/GPS navigation system in high-speed applications. GPS Solutions. 2018; 22: 1-13. DOI: https://doi.org/10.1007/s10291-017-0682-x.
[16] Abdolkarimi ES, Mosavi MR. Wavelet-adaptive neural subtractive clustering fuzzy inference system to enhance low-cost and high-speed INS/GPS navigation system. GPS Solutions. 2020; 24(2): 36. DOI: https://doi.org/10.1007/s10291-020-0951-y.
[17] Abdolkarimi ES, Mosavi MR. low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments. GPS Solutions. 2020; 24(4): 108. DOI: https://doi.org/10.1007/s10291-020-01023-9.
[18] Abdolkarimi ES, Abaei G, Selamat A, Mosavi, MR. A hybrid Type-2 Fuzzy Logic System and Extreme Learning Machine for low-cost INS/GPS in high-speed vehicular navigation system. Applied Soft Computing. 2020; 94: 106447. DOI: https://doi.org/10.1016/j.asoc.2020.106447.
[19] Abdolkarimi ES, Mosavi MR. A Modified Neuro-Fuzzy System for Accuracy Improvement of Low-Cost MEMS-Based INS/GPS Navigation System. Wireless Personal Communications. 2021; 129(2): 1369-1392. DOI: https://doi.org/10.1007/s11277-023-10194-w.
[19] Wei X, Lang P, Li J, Feng K, Zhan Y. A hybrid optimization method based on extreme learning machine aided factor graph for INS/GPS information fusion during GPS outages. Aerospace Science and Technology. 2024; 152, 109326. DOI: https://doi.org/10.1016/j.ast.2024.109326.
[20] Nourmohammadi H, Keighobadi J. Design and experimental evaluation of indirect centralized and direct decentralized integration scheme for low-cost INS/GNSS system. GPS Solutions. 2018; 22, 1-18. DOI: https://doi.org/10.1007/s10291-018-0732-z.
[21] Khankalantary S, Sadra Rafatnia, Mohammadkhani H. Design and implementation of a centralized predictive model estimation algorithm with the fuzzy approach for in-motion alignment of a low-cost integrated INS/GPS inertial navigation system. Journal of Aerospace Mechanics. 2022; 17(4): 1-14.
DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.14.4.1.9.