[1] Wen L, PFan F, Ding X. Tensegrity metamaterials for soft robotics. Science Robotics. 2020;5(45):eabd9158. DOI: https://doi.org/10.1126/scirobotics.abd9158.
[2] Kahla NB, Ouni MHE, Ali NBH, Khan RA. Nonlinear dynamic response and stability analysis of a tensegrity bridge to selected cable rupture. Latin American Journal of Solids and Structures. 2020;17:e253. DOI: https://doi.org/10.1590/1679-78255907.
[3] Motro R. Tensegrity: structural systems for the future: Elsevier; 2003.
[4] Tibert A, Pellegrino S. Review of form-finding methods for tensegrity structures. International Journal of Space Structures. 2011;26(3):241-55. DOI: https://doi.org/10.1260/0266-3511.26.3.241.
[5] Zhang L-Y, Zhu S-X, Li S-X, Xu G-K. Analytical form-finding of tensegrities using determinant of force-density matrix. Composite Structures. 2018;189:87-98. DOI: https://doi.org/10.1016/j.compstruct.2018.01.054.
[6] Kan Z, Peng H, Chen B, Zhong W. Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM. Composite Structures. 2018;187:241-58. DOI: https://doi.org/10.1016/j.compstruct.2017.12.050.
[7] Murakami H. Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. International Journal of Solids and Structures. 2001;38(20):3615-29. DOI: https://doi.org/10.1016/S0020-7683(00)00233-X.
[8] Faroughi S, Khodaparast HH, Friswell MI. Non-linear dynamic analysis of tensegrity structures using a co-rotational method. International Journal of Non-Linear Mechanics. 2015;69:55-65. DOI: https://doi.org/10.1016/j.ijnonlinmec.2014.11.021.
[9] Rimoli JJ. A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures. Mechanics of Materials. 2018;116:146-57. DOI: https://doi.org/10.1016/j.mechmat.2017.01.009.
[10] Wang Y, Xu X, Luo Y. Form-finding of tensegrity structures via rank minimization of force density matrix. Engineering Structures. 2021;227:111419. DOI: https://doi.org/10.1016/j.engstruct.2020.111419.
[11] Pagitz M, Tur JM. Finite element based form-finding algorithm for tensegrity structures. International Journal of Solids and Structures. 2009;46(17):3235-40. DOI: https://doi.org/10.1016/j.ijsolstr.2009.04.018.
[12] Gasparini D, Klinka KK, Arcaro VF. A finite element for form-finding and static analysis of tensegrity structures. Journal of Mechanics of Materials and Structures. 2012;6(9):1239-54. DOI: https://dx.doi.org/10.2140/jomms.2011.6.1239.
[13] Lu C, Zhu H, Li S. Initial form-finding design of deployable tensegrity structures with dynamic relaxation method. Journal of Intelligent & Fuzzy Systems. 2017;33(5):2861-8. DOI: https://doi.org/0.3233/JIFS-169335.
[14] Barnes MR. Form finding and analysis of tension structures by dynamic relaxation. International Journal of Space Structures. 1999;14(2):89-104. DOI: https://doi.org/10.1260/0266351991494722.
[15] Ma S, Yuan X-F, Xie S-D. A new genetic algorithm-based topology optimization method of tensegrity tori. KSCE Journal of Civil Engineering. 2019;23:2136-47. DOI: https://doi.org/10.1007/s12205-019-1700-z.
[16] Li Y, Feng X-Q, Cao Y-P, Gao H. A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. International Journal of Solids and Structures. 2010;47(14-15):1888-98. DOI: https://doi.org/10.1016/j.ijsolstr.2010.03.026.
[17] Brökemeier F, Hengstenberg SM, Keeble JW, Robin CE, Rocco F, Savage MJ. Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei. arXiv preprint arXiv:2409.12064. 2024. DOI: https://doi.org/10.48550/arXiv.2409.12064.
[18] Scolamiero LG, Zolesi V, Ganga PL, Podio-Guidugli P, Tibert G, Micheletti A, inventors; Agence Spatiale Europeenne, assignee. Deployable tensegrity structure, especially for space applications. United States patent US 9,815,574. 2017.
[19] Motro R. Tensegrity systems: the state of the art. International journal of space structures. 1992;7(2):75-83. DOI: https://doi.org/10.1177/026635119200700201.
[20] Małek M, Łasica W, Kadela M, Kluczyński J, Dudek D. Physical and mechanical properties of polypropylene fibre-reinforced cement–glass composite. Materials. 2021;14(3):637. DOI: https://doi.org/10.3390/ma14030637.
[21] Zhang J, Ohsaki M. Form-finding of complex tensegrity structures by dynamic relaxation method. Journal of Structural and Construction Engineering. 2016;81(719):71-7.
[22] Domer B. Performance enhancement of active structures during service lives. EPFL; 2003. DOI: https://doi.org/10.5075/epfl-thesis-2750.
[23] Lee S, Lee J, Kang J. A genetic algorithm based form-finding of tensegrity structures with multiple self-stress states. Journal of Asian Architecture and Building Engineering. 2017;16(1):155-62. DOI: https://doi.org/10.1016/j.proeng.2011.07.371.
[24] Yamamoto M, Gan B, Fujita K, Kurokawa J. A genetic algorithm based form-finding for tensegrity structure. Procedia Engineering. 2011;14:2949-56.
[25] Perera NS. A machine learning application for form-finding of tensegrity structures: Queen's University (Canada); 2018.
[26] Zalyaev E, Savin S, Vorochaeva L, editors. Machine learning approach for tensegrity form finding: Feature extraction problem. 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR); 2020: IEEE. DOI: https://doi.org/10.1109/DCNAIR50402.2020.9216799.
[27] Lee S, Lieu QX, Vo TP, Lee J. Deep neural networks for form-finding of tensegrity structures. Mathematics. 2022;10(11):1822. DOI: https://doi.org/10.3390/math10111822.
[28] Zhao L, Sun Z, Liu K, Zhang J. The dynamic relaxation form finding method aided with advanced recurrent neural network. CAAI Transactions on Intelligence Technology. 2023;8(3):635-44. DOI: https://doi.org/10.1049/cit2.12177.
[29] Paul C, Lipson H, Cuevas FJV, editors. Evolutionary form-finding of tensegrity structures. Proceedings of the 7th annual conference on Genetic and evolutionary computation; 2005. DOI: https://doi.org/10.1145/1068009.1068011.
[30] Rieffel J, Valero-Cuevas F, Lipson H. Automated discovery and optimization of large irregular tensegrity structures. Computers & Structures. 2009;87(5-6):368-79. DOI: https://doi.org/10.1016/j.compstruc.2008.11.010.
[31] Xu X, Luo Y. Form-finding of nonregular tensegrities using a genetic algorithm. Mechanics Research Communications. 2010;37(1):85-91. DOI: https://doi.org/10.1016/j.mechrescom.2009.09.003.
[32] Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press; 1992.
[33] Lobo D, Vico FJ. Evolutionary development of tensegrity structures. Biosystems. 2010;101(3):167-76. DOI: https://doi.org/10.1016/j.biosystems.2010.06.005.
[34] Koohestani K, Guest S. A new approach to the analytical and numerical form-finding of tensegrity structures. International Journal of Solids and Structures. 2013;50(19):2995-3007. DOI: https://doi.org/10.1016/j.ijsolstr.2013.05.014.
[35] Yu X, Yang Y, Ji Y. Automatic Form-finding of N-4 Type Tensegrity Structures. Latin American Journal of Solids and Structures. 2022;19:e419. DOI: https://doi.org/10.1590/1679-78256735.
[36] Harichandran A, Sreevalli IY. Form-finding of tensegrity structures based on force density method. Indian Journal of Science and Technology. 2016. DOI: https://doi.org/10.17485/ijst/2016/v9i24/93145, June 2016.
[37] Azimi M, Dezh ME, Alikhani A. Integral sliding mode fault-tolerant control and active vibration suppression of a flexible spacecraft in the presence of external disturbances. Journal of Aerospace Mechanics. 2023; 19(1):137-151.
DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1402.19.1.10.5.