بررسی عددی جریان در فرآیند گذار از نقطه کارکرد بهینه به بار بیشینه در توربین فرانسیس

نوع مقاله : گرایش پیشرانش و انتقال حرارت

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی دریا، دانشگاه دریانوردی و علوم دریایی، چابهار، ایران

2 نویسنده مسئول: استادیار، دانشکده مهندسی دریا، دانشگاه دریانوردی و علوم دریایی، چابهار، ایران

3 استادیار، دانشکده مهندسی دریا، دانشگاه دریانوردی و علوم دریایی، چابهار، ایران

چکیده

جریان در درفت‌تیوب توربین‌های آبی در نقطه کارکرد بار بیشینه با ناپایداری‌های زیادی همراه می‌باشد. علاوه بر افت راندمان ناشی از شکست گردابه، نوسانات فشاری فرکانس پایین ناشی از آن می‌تواند موجب پدیده تشدید شده و عمر توربین را کاهش دهد. در پژوهش حاضر فرآیند تشکیل هسته گردابه بار بیشینه (مشعل) در گذار از نقطه کارکرد بهینه به بار بیشینه موردمطالعه قرارگرفته و رژیم‌های گذرای تشکیل‌شده حین این فرآیند گذار موردبحث و مطالعه واقع‌شده‌اند. مشخص می‌شود که هسته گردابه مشعل نتیجه پدیده شکست گردابه حبابی بوده و عامل اصلی آن نیز تشکیل نقطه سکون و ایجاد جریان بازچرخشی در محور درفت‌تیوب است. این جریان بازچرخشی به دلیل افت مومنتوم محوری در ناحیه مخروطی درفت‌تیوب ایجاد می‌شود. نتایج هسته گردابه نشان می‌دهد که در مراحل رشد و تشکیل هسته گردابه مشعل، ابتدا قطر هسته پایه بار بهینه رشد می‌کند. سپس در سطح ساختار هسته گردابه امواجی ایجاد خواهند شد که با گذشت زمان و قدرت گرفتن چرخش در میدان جریان، ساختار یکپارچه هسته را گسسته و به چندین بخش تقسیم خواهد شد. سپس قطر و طول ساختار هسته گردابه افزایش‌یافته و بخش‌های زیادی از مقطع عرضی درفت‌تیوب را تحت تأثیر قرار می‌دهد، طول این ساختار تا دیفیوزر درفت‌تیوب پیشروی خواهد داشت. ازاین‌رو، مشخص می‌شود که محل اصلی اثرگذاری مشعل، انتهای ناحیه مخروطی و ورودی زانویی درفت‌تیوب است. با بررسی نتایج عددی مشخص گردید با گذشت 5/1 تا 2 ثانیه پس از شروع فرآیند گذار تغییرات چشمگیری در مؤلفه‌های سرعت دورانی، محوری و شعاعی به وجود خواهد آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Investigation of the Transition Process from the Optimal Operating Point to the Maximum Load of the Francis Turbine

نویسندگان [English]

  • Aliasqar Haqani 1
  • Mohammad Reza Negahdari 2
  • Seyed Amin Hosseini 3
1 M.Sc. Student, School of Marine Engineering, Chabahar Maritime University, Chabahar, Iran
2 Corresponding author: Assistant Professor, School of Marine Engineering, Chabahar Maritime University, Chabahar, Iran
3 Assistant Professor, School of Marine Engineering, Chabahar Maritime University, Chabahar, Iran
چکیده [English]

The flow in the draft tube of water turbines at the point of maximum load operation is associated with many instabilities. In addition to the loss of efficiency caused by the vortex breakdown, the resulting low frequency pressure fluctuations can cause the resonance phenomenon and reduce the life of the turbine. In the current study, the process of forming the maximum load vortex core (torch) in the transition from the optimal operating point to the maximum load has been studied and the transient regimes formed during this transition process have been discussed and studied. It is clear that the core of the torch vortex is the result of the bubble vortex breaking phenomenon and its main factor is the formation of a stagnation point and the creation of a recirculation flow in the axis of the draft tube. This recirculation flow is created due to the loss of axial momentum in the conical region of the draft tube. The results of the vortex core show that in the stages of growth and formation of the burner vortex core, the core diameter of the optimal charge base grows first. Then, waves will be created on the surface of the vortex core structure, which with the passage of time and the strength of the rotation in the flow field, will break the integrated structure of the core and will be divided into several parts. Then the diameter and length of the vortex core structure increases and affects many parts of the draft tube cross-section, the length of this structure will progress to the draft tube diffuser. Therefore, it is clear that the main place of effect of the torch is the end of the conical area and the elbow inlet of the draft tube. By examining the numerical results, it was determined that with the passage of 1.5 to 2 seconds after the start of the transition process, there are significant changes in the rotational, axial and radial velocity components to will exist.

کلیدواژه‌ها [English]

  • Water turbines
  • Vortex Breakdown
  • The process of transition of work point
  • Optimal load
  • Maximum load
[1] Sayers AT. Hydraulic and compressible flow turbomachines. McGraw-Hill google schola. 1990;2:136-48.
[1] Frunzǎverde D, Muntean S, Mǎrginean G, Campian V, Marşavina L, Terzi R, Şerban V. Failure analysis of a Francis turbine runner. In IOP conference series: earth and environmental science 2010; 12(1), 012115. DOI https://doi.org/10.1088/1755-1315/12/1/012115.
[3] Jonsson P., 2011. Flow and pressure measurements in low-head hydraulic turbines (Doctoral dissertation, Luleå tekniska universitet).
[4] Foroutan H. Simulation, analysis, and mitigation of vortex rope formation in the draft tube of hydraulic turbines. The Pennsylvania State University; 2015.
[5] Rheingans WJ. Power swings in hydroelectric power plants. Transactions of The American Society of Mechanical Engineers. 1940;62(3):171-7. DOI https://doi.org/10.1115/1.4021394.
[6] Nishi M. Flow regimes in an elbow-type draft tube. In Proc. 11th IAHR Symposium on Hydraulic Machinery and System, Amsterdam, 1982, 1-13.
[8] Iliescu MS, Ciocan GD, Avellan F. Analysis of the cavitating draft tube vortex in a Francis turbine using particle image velocimetry measurements in two-phase flow, 2008. DOI https://doi.org/10.1115/1.2813052.
[9] Trivedi C, Cervantes MJ, Gandhi BK, Dahlhaug OG. Experimental and numerical studies for a high head Francis turbine at several operating points. Journal of Fluids Engineering. 2013;135(11):111102. DOI https://doi.org/10.1115/1.4024805.
[10] Dennis DJ, Seraudie C, Poole RJ. Controlling vortex breakdown in swirling pipe flows: experiments and simulations. Physics of Fluids. 2014 1;26(5). DOI https://doi.org/10.1063/1.4875486.
[11] Pasche S, Gallaire F, Dreyer M, Farhat M. Obstacle-induced spiral vortex breakdown. Experiments in fluids. 2014;55:1-1. DOI https://doi.org/10.1007/s00348-014-1784-7.
[12] Goyal R, Trivedi C, Gandhi BK, Cervantes MJ, Dahlhaug OG. Transient pressure measurements at part load operating condition of a high head model Francis turbine. sādhanā. 2016;41:1311-20. DOI https://doi.org/10.1007/s12046-016-0556-x.
[13] Susan-Resiga R, Ciocan GD, Avellan F. Swirling flow downstream a Francis turbine runner. In The 6th International Conference on Hydraulic Machinery and Hydrodynamics, Timisoara: Romania, October 2004, 21-22.
[14] Platonov DV, Minakov AV, Dekterev DA. The study of the influence of stabilizing devices on the pressure pulsations at the free discharge of water through the turbine. DOI http://dx.doi.org/10.1051/matecconf/201711506002.
[15] Goyal R, Cervantes MJ, Gandhi BK. Vortex rope formation in a high head model Francis turbine. Journal of Fluids Engineering. 2017 1;139(4):041102. DOI https://doi.org/10.1115/1.4035224.
[16] Goyal R, Gandhi BK, Cervantes MJ. Transient Pressure Measurements in the Vaneless Space of a Francis Turbine during Load Acceptances from Minimum Load. InJournal of Physics: Conference Series 2018; 1042(1), 012009. IOP Publishing. DOI https://doi.org/10.1088/1742-6596/1042/1/012009.
[17] Goyal R, Gandhi BK, Cervantes MJ. Experimental investigation on a high head Francis turbine model during shutdown operation. In IOP Conference Series: Earth and Environmental Science 2019; 240 (2), 022028. IOP Publishing. DOI https://doi.org/10.1088/1755-1315/240/2/022028.
[18] Goyal R, Cervantes MJ, Gandhi BK. Synchronized PIV and pressure measurements on a model Francis turbine during start-up. Journal of Hydraulic Research. 2020 Jan 2;58(1):70-86. DOI https://doi.org/10.1080/00221686.2018.1555551.
[19] Goyal R. Vortex core formation in a Francis turbine during transient operation from best efficiency point to high load. Physics of Fluids. 2020;32(7).
[20] Cervantes M, Trivedi C, Dahlhaug OG, Nielsen T. Francis-99 Workshop 2: transient operation of Francis turbines. In Journal of Physics, Conference Series 2017; 782. Institute of Physics (IOP).
[21] Trivedi C. Investigations of compressible turbulent flow in a high-head Francis turbine. Journal of Fluids Engineering. 2018;140(1):011101. DOI https://doi.org/10.1115/1.4037500.
[22] Jakobsen KR, Holst MA. CFD simulations of transient load change on a high head Francis turbine. In Journal of Physics: Conference Series 2017; 782, (1), 012002. IOP Publishing. DOI https://doi.org/10.1088/1742-6596/782/1/012002.
[23] Maddahian R, Cervantes MJ, Sotoudeh N. Numerical investigation of the flow structure in a Kaplan draft tube at part load. In IOP Conference Series: Earth and Environmental Science 2016; 49, (2), 022008. IOP Publishing. DOI https://doi.org/10.1088/1755-1315/49/2/022008.
[24] Sotoudeh N, Maddahian R, Cervantes MJ. Formation of Rotating Vortex Rope in the Francis-99 Draft Tube. In IOP Conference Series: Earth and Environmental Science 2019; 240, (2), 022017. IOP Publishing. DOI https://doi.org/10.1088/1755-1315/240/2/022017.
[25] Jakobsen KR, Tengs E, Holst MA. Reducing computational effort of high head francis turbines. In IOP Conference Series: Earth and Environmental Science 2019; 240, (7),072001. IOP Publishing. DOI https://doi.org/10.1088/1755-1315/240/7/072001.
[26] Sotoudeh N, Maddahian R, Cervantes MJ. Investigation of rotating vortex rope formation during load variation in a Francis turbine draft tube. Renewable energy. 2020;151:238-54. DOI https://doi.org/10.1016/j.renene.2019.11.014.
[27] Goyal R, Trivedi C, Kumar Gandhi B, Cervantes MJ. Numerical simulation and validation of a high head model Francis turbine at part load operating condition. Journal of The Institution of Engineers (India): Series C. 2018;99:557-70. DOI https://doi.org/10.1007/s40032-017-0380-z.
[28] Trivedi C. A systematic validation of a Francis turbine under design and off-design loads. Journal of Verification, Validation and Uncertainty Quantification. 2019;4(1):011003. DOI https://doi.org/10.1115/1.4043965.
دوره 20، شماره 3 - شماره پیاپی 77
شماره پیاپی 77، فصلنامه پاییز
آذر 1403
صفحه 107-126
  • تاریخ دریافت: 03 تیر 1403
  • تاریخ بازنگری: 26 مرداد 1403
  • تاریخ پذیرش: 27 شهریور 1403
  • تاریخ انتشار: 01 آذر 1403