ارائه مدل پیوسته برای تحلیل رفتار نوسانی مولکول باکی‌بال داخل نانوتورس کربنی

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 نویسنده مسئول: دانشیار، گروه علوم مهندسی، دانشکده فناوری‌های نوین، محقق اردبیلی، نمین، ایران

2 استادیار، گروه مهندسی صنایع، دانشکده فنی مهندسی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران

چکیده

در این مقاله، رفتار نوسانی نانونوسانگر باکی‌بال-نانوتورس کربنی موردمطالعه قرارگرفته است. مولکول باکی‌بال حین چرخش داخل نانوتورس تحت تأثیر سه نیروی واندروالس، گریز از مرکز و گرانشی قرار دارد. به‌منظور تعیین برهمکنش‌های غیرپیوندی، از رهیافت تقریب پیوسته به‌همراه تابع پتانسیل لنارد-جونز استفاده‌شده است. بر اساس این روش، روابطی نیمه‌تحلیلی برای تعیین انرژی پتانسیل و نیروی واندروالس بین باکی‌بال و نانوتورس ارائه‌شده است. با استخراج معادلات حرکت چرخشی باکی‌بال داخل نانوتورس با استفاده از قانون دوم نیوتن، رابطه‌ای جدید برای محاسبه فرکانس نانونوسانگر برحسب شرایط اولیه و پارامترهای هندسی سیستم معرفی‌شده است. نتایج عددی نشان می‌دهند که انرژی پتانسیل گرانشی در مقایسه با انرژی‌های پتانسیل واندروالس و گریز از مرکز قابل‌اغماض است. همچنین، اگر شعاع حلقه نانوتورس به‌سمت بی‌نهایت میل کند، موقعیت تعادل مولکول باکی‌بال داخل نانوتورس با موقعیت تعادل آن داخل نانولوله طویل کاملاً مطابقت خواهد داشت. تأثیر شعاع لوله و شعاع حلقه نانوتورس بر روی موقعیت تعادل باکی‌بال داخل نانوتورس و نیز فرکانس نوسانات سیستم بررسی‌شده است. نتایج ارائه‌شده در این مقاله حاکی از آن است که نانونوسانگر باکی‌بال-نانوتورس فرکانس‌هایی تا 1500 گیگاهرتز تولید می‌کند. همچنین، فرکانس این نانونوسانگر چندین برابر فرکانس نانونوسانگر باکی‌بال-نانولوله کربنی است.

چکیده تصویری

ارائه مدل پیوسته برای تحلیل رفتار نوسانی مولکول باکی‌بال داخل نانوتورس کربنی

تازه های تحقیق

  • نیروی جاذبه در مقایسه با نیروهای واندروالس و گریز از مرکز قابل‌اغماض است.
  • موقعیت تعادل مولکول باکی­بال به شعاع لوله­ی نانوتورس وابسته است.
  • فرکانس حاصل از چرخش مولکول باکی‌بال داخل نانوتورس در مقیاس گیگاهرتز است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a Continuum Model for Analyzing the Oscillatory Behavior of Buckyball Molecule Inside Carbon Nanotorus

نویسندگان [English]

  • Fatemeh Sadeghi 1
  • Meisam Sadeghi 2
1 Corresponding author: Associate Professor, Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
2 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
چکیده [English]

In this article, the oscillatory behavior of buckyball-carbon nanotorus nano-oscillator is investigated. The buckyball molecule is under the influence of three forces; namely van der Waals, centrifugal and gravity while rotating inside the nanotorus. To obtain the non-bonded interactions, the continuum approximation along with the Lennard-Jones potential function is used. Using this approach, semi-analytical expressions are presented to determine the potential energy and van der Waals force between buckyball and nanotorus. By deriving the equations of rotational motion of the buckyball inside the nanotorus based on the Newton’s second law, a novel formula is introduced to attain the frequency of the nano-oscillator depending on the initial conditions and geometrical parameters of system. Numerical results show that gravitational potential energy is negligible compared to the van der Waals and centrifugal potential energies. Moreover, if the ring radius of nanotorus tends to infinity, the equilibrium position of buckyball inside nanotorus is completely consistent with that of buckyball inside infinite nanotube. The effect of tube and ring radii of nanotorus on the equilibrium position of buckyball inside nanotorus and also the frequency of the oscillations of the system is examined. The results presented in this article indicate that buckyball-carbon nanotorus nano-oscillator produces frequencies up to 1500 gigahertz. Furthermore, the frequency of this nano-oscillator is several times higher than that of buckyball-carbon nanotube nano-oscillator.

کلیدواژه‌ها [English]

  • Buckyball
  • Nanotorus
  • Nano-oscillator
  • Continuum approximation method
  • Frequency


Smiley face

[1] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56. DOI: https://doi.org/10.1038/354056a0.
[2] Ajori S, Sadeghi F. A Molecular dynamics study on the buckling analysis of functionalized graphene with nylon 6, 6 in aqueous environment. Journal of Aerospace Mechanics. 2023;19(4):1-10. DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1402.19.4.1.2.
[3] Aftab S, Iqbal MZ, Rim YS. Recent advances in rolling 2D TMDs nanosheets into 1D TMDs nanotubes/nanoscrolls. Small. 2023;19(1):2205418. DOI:  https://doi.org/10.1002/smll.202205418.
[4] Shoukat R, Khan MI. Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsystem Technologies. 2021;27:4183. DOI: https://doi.org/10.1007/s00542-021-05211-6.
[5] Huang K, Xu Q, Ying Q, Gu B, Yuan W. Wireless strain sensing using carbon nanotube composite film. Composites Part B: Engineering. 2023;256:110650. DOI: https://doi.org/10.1016/j.compositesb.2023.110650.
[6] Dieny B, Prejbeanu IL, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov SO, Akerman J, Deac A. Opportunities and challenges for spintronics in the microelectronics industry. Nature Electronics. 2020;3(8):446. DOI: https://doi.org/10.1038/s41928-020-0461-5.
[7] Al Misba W, Mavikumbure HS, Rajib MM, Marino DL, Cobilean V, Manic M, Atulasimha J. Spintronic physical reservoir for autonomous prediction and long-term household energy load forecasting. IEEE Access. 2023;11:124725. DOI: https://doi.org/10.1109/ACCESS.2023.3326414.
[8] Fiorelli R, Peralías E, Méndez-Romero R, Rajabali M, Kumar A, Zahedinejad M, Åkerman J, Moradi F, Serrano-Gotarredona T, Linares-Barranco B. CMOS front end for interfacing spin-hall nano-oscillators for neuromorphic computing in the GHz Range. Electronics. 2023;12(1):230. DOI: https://doi.org/10.3390/electronics12010230.
[9] Wittrock S, Perna S, Lebrun R, Ho K, Dutra R, Ferreira R, Bortolotti P, Serpico C, Cros V. Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points. Nature Communications. 2024 ;15(1):971. DOI:  https://doi.org/10.5281/zenodo.10058698.
[10] Leroux N, De Riz A, Sanz-Hernández D, Marković D, Mizrahi A, Grollier J. Convolutional neural networks with radio-frequency spintronic nano-devices. Neuromorphic Computing and Engineering. 2022;2(3):034002. DOI: https://doi.org/10.1088/2634-4386/ac77b2.
[11] Pontin A, Bullier NP, Toroš M, Barker PF. Ultranarrow-linewidth levitated nano-oscillator for testing dissipative wave-function collapse. Physical Review Research. 2020;2(2):023349. DOI: https://doi.org/10.1103/PhysRevResearch.2.023349.
[12] Merneedi A, Natrayan L, Kaliappan S, Veeman D, Angalaeswari S, Srinivas C, Paramasivam P. Experimental investigation on mechanical properties of carbon nanotube‐reinforced epoxy composites for automobile application. Journal of Nanomaterials. 2021;2021(1):4937059. DOI: https://doi.org/10.1155/2021/4937059.
[13] Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Advanced Materials. 2020;32(5):1902028. DOI: https://doi.org/10.1002/adma.201902028.
[14] lmanassra IW, Manasrah AD, Al-Mubaiyedh UA, Al-Ansari T, Malaibari ZO, Atieh MA. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. Journal of Molecular Liquids. 2020;304:111025. DOI: https://doi.org/10.1016/j.molliq.2019.111025.
[15] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637. DOI: https://doi.org/10.1126/science.287.5453.637.
[16] Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science. 2000;289(5479):602. DOI: https://doi.org/10.1126/science.289.5479.602.
[17] Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters. 2002;88(4):045503. DOI: https://doi.org/10.1103/PhysRevLett.88.045503.
[18] Ajori S, Ansari R, Sadeghi F. Molecular dynamics study of gigahertz nanomechanical oscillators based on an ion inside a series of electrically charged carbon nanotubes. European Journal of Mechanics-A/Solids. 2018;69:45. DOI: https://doi.org/10.1016/j.euromechsol.2017.12.001.
[19] Liu R, Zhao Y, Sui C, Sang Y, Hao W, Li J, Wu J, He X, Wang C. Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science. 2023;222:112105. DOI: https://doi.org/10.1016/j.commatsci.2023.112105.
[20] Legoas SB, Coluci VR, Braga SF, Coura PZ, Dantas SO, Galvao DS. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Physical Review Letters. 2003;90(5):055504. DOI: https://doi.org/10.1103/PhysRevLett.90.055504.
[21] Liu P, Zhang Y, Lu C. Oscillatory behavior of C60-nanotube oscillators: a molecular-dynamics study. Journal of Applied Physics. 2005;97(9): 094313. DOI: https://doi.org/10.1063/1.1890451.
[22] Vaezi M. Programmable oscillation of C60 inside carbon nanotubes subjected to strain gradient. Journal of Applied Physics. 2023;134(23): 234301. DOI: https://doi.org/10.1063/5.0180180.
[23] Ansari R, Sadeghi F, Motevalli B. A comprehensive study on the oscillation frequency of spherical fullerenes in carbon nanotubes under different system parameters. Communications in Nonlinear Science and Numerical Simulation. 2013;18(3):769. DOI: https://doi.org/10.1016/j.cnsns.2012.08.011.
[24] Girifalco LA, Hodak M, Lee RS. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B. 2000;62(19):13104. DOI: https://doi.org/10.1103/PhysRevB.62.13104.
[25] Bubenchikov AM, Bubenchikov MA, Mamontov DV, Chelnokova AS, Chumakova SP. Movement of fullerenes and their dimers inside carbon nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures. 2021;29(10):803. DOI: https://doi.org/10.1080/1536383X.2021.1900122.
[26] Qian D, Liu WK, Ruoff RS. Mechanics of C60 in nanotubes. The Journal of Physical Chemistry B. 2001;105(44):10753. DOI: https://doi.org/10.1021/jp0120108.
[27] Hodak M, Girifalco LA. Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes. Chemical Physics Letters. 2001;350(5-6):405. DOI: https://doi.org/10.1016/S0009-2614(01)01339-2.
[28] Ansari R, Sadeghi F, Ajori S. Continuum and molecular dynamics study of C60 fullerene–carbon nanotube oscillators. Mechanics Research Communications. 2013;47:18. DOI: https://doi.org/10.1016/j.mechrescom.2012.11.002.
[29] Ansari R, Gholami R. Dynamic stability analysis of multi-walled carbon nanotubes with arbitrary boundary conditions based on the nonlocal elasticity theory. Mechanics of Advanced Materials and Structures. 2017;24(14):1180-1188. DOI: https://doi.org/10.1080/15376494.2016.1227489.
[30] Ansari R, Gholami R, Sahmani S, Norouzzadeh A, Bazdid-Vahdati M. Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment. Acta Mechanica Solida Sinica. 2015;28(6):659-667. DOI: https://doi.org/10.1016/S0894-9166(16)30007-6.
[31] Ansari R, Gholami R, Rouhi H. Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Composite Structures. 2015;126:216-226. DOI: https://doi.org/10.1016/j.compstruct.2015.02.068.
[32] Ansari R, Gholami R, Ajori S. Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. Journal of Vibration and Acoustics. 2013;135(5):051016. DOI: https://doi.org/10.1115/1.4024208.
[33] Cox BJ, Thamwattana N, Hill JM. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007;463(2078):461. DOI: https://doi.org/10.1098/rspa.2006.1771.
[34] Sarapat P, Hill JM, Baowan D. A review of geometry, construction and modelling for carbon nanotori. Applied Sciences. 2019;9(11):2301. DOI:  https://doi.org/10.3390/app9112301.
[35] Taha-Tijerina J, Aviña K, Martínez JM, Arquieta-Guillén PY, González-Escobedo M. Carbon nanotori structures for thermal transport applications on lubricants. Nanomaterials. 2021;11(5):1158. DOI: https://doi.org/10.3390/nano11051158.
[36] Taha-Tijerina JJ, Martínez JM, Euresti D, Arquieta-Guillén PY. Carbon nanotori reinforced lubricants in plastic deformation processes. Lubricants. 2022;10(5):74. DOI: https://doi.org/10.3390/lubricants10050074.
[37] Sano M, Kamino A, Okamura J, Shinkai S. Ring closure of carbon nanotubes. Science. 2001;293(5533):1299. DOI: https://doi.org/10.1126/science.1061050.
[38] Sarapat P, Hill JM, Baowan D. A review of geometry, construction and modelling for carbon nanotori. Applied Sciences. 2019;9(11):2301. DOI: https://doi.org/10.3390/app9112301.
[39] Yasri S, Wiwanitkit V. Carbon nanotorous for advanced therapeutic applications. Carbon Nanostructures in Biomedical Applications. Cham: Springer International Publishing. 2023;123. DOI: https://doi.org/10.1007/978-3-031-28263-8_5.
[40] Naseh MF, Ansari JR, Alam MS, Javed MN. Sustainable nanotorus for biosensing and therapeutical applications. Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Cham: Springer International Publishing. 2023:1985. DOI: https://doi.org/10.1007/978-3-031-16101-8_47.
[41] Martel R, Shea HR, Avouris P. Rings of single-walled carbon nanotubes. Nature. 1999;398(6725):299. DOI: https://doi.org/10.1038/18589.
[42] Martel R, Shea HR, Avouris P. Ring formation in single-wall carbon nanotubes. The Journal of Physical Chemistry B. 1999;103(36):7551. DOI: https://doi.org/10.1021/jp991513z.
[43] Huhtala M, Kuronen A, Kaski K. Computational studies of carbon nanotube structures. Computer Physics Communications. 2002;147(1-2):91. DOI: https://doi.org/10.1016/S0010-4655(02)00223-0.
[44] Han J, Chancellor MK. Toroidal single wall carbon nanotubes in fullerene crop circles. 1997;NAS-97-015.
[45] Ansari R, Sadeghi F, Ajori S. Oscillation characteristics of carbon nanotori molecules along carbon nanotubes under various system parameters. European Journal of Mechanics-A/Solids. 2017;62:67. DOI: https://doi.org/10.1016/j.euromechsol.2016.11.004.
[46] Hosseinzadeh M, Sadeghi F, Ansari R. Perfect position and oscillation frequency of nanosectors orbiting inside carbon nanotori. Computations and Simulations in Mechanical Science. 2018;1(1):42.
[47] Ajori S, Sadeghi F. Design of high-frequency carbon nanotube–carbon nanotorus oscillators for energy harvesting: A molecular dynamics study. Langmuir. 2024;40(9):4811. DOI: https://doi.org/10.1021/acs.langmuir.3c03702.
[48] Jones JE. On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1924;106(738) :441-462. DOI: https://doi.org/10.1098/rspa.1924.0081.
[49] Liu J, Dai H, Hafner JH, Colbert DT, Smalley RE, Tans SJ, Dekker C. Fullerene'crop circles'. Nature. 1997;385(6619):780. DOI: https://doi.org/10.1038/385780b0.
[50] Cox BJ, Thamwattana N, Hill JM. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behaviour. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007;463(2078):477. DOI: https://doi.org/10.1098/rspa.2006.1772.
[51] Ansari R, Sadeghi F. Mechanics of nested spherical fullerenes inside multi-walled carbon nanotubes. European Journal of Mechanics-A/Solids. 2015;49:283. DOI: https://doi.org/10.1016/j.euromechsol.2014.08.003.
دوره 20، شماره 4 - شماره پیاپی 78
شماره پیاپی 78، فصلنامه زمستان
اسفند 1403
صفحه 23-42
  • تاریخ دریافت: 30 تیر 1403
  • تاریخ بازنگری: 31 مرداد 1403
  • تاریخ پذیرش: 11 شهریور 1403
  • تاریخ انتشار: 01 اسفند 1403