قانون هدایت غیرخطی مقاوم با قید زاویه برخورد محدود مبتنی بر بازی دیفرانسیلی

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 نویسنده مسئول: استادیار، مجتمع دانشگاهی مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

2 کارشناسی ارشد، مجتمع دانشگاهی مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

3 استادیار، مجتمع دانشگاهی مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

چکیده

با پیشرفت فن‌آوری، اهدافی در کلاس‌های گوناگون و با ویژگی‌های متنوع پا به عرصه میدان گذاشته‌اند. ره‌گیرها نیز خود دارای محدودیت‌هایی از قبیل ابعاد، مقدار سوخت و توانایی مانور اجرا هستند. لذا به‌منظور برخورد مؤثرتر به هدف و حصول عملکرد بهتر، ارائه روش‌های هدایتی جدید امری ضروری است. رویکرد اصلی این پژوهش؛ طراحی قانون هدایت مقاوم با زاویه برخورد محدود با استفاده از تئوری بازی دیفرانسیلی و کنترل بهینه غیرخطی است. در این رویکرد شتاب ره‌گیر و شتاب هدف به‌عنوان دو ورودی مجزا محاسبه می‌شوند؛ ره‌گیر به دنبال کمینه کردن تابع هزینه و هم‌زمان با آن فرض می‌شود که هدف به دنبال بیشینه کردن همان تابع هزینه است. برای این منظور، با در نظر گرفتن معادلات غیرخطی دارای نامعینی یک قانون هدایت مقاوم مبتنی بر معادلات ریکاتی وابسته به حالت ارائه‌شده است. در اینجا، رویکرد تبدیل مسئله کنترل مقاوم به کنترل بهینه است و با استفاده از روش بهینه معادلات ریکاتی وابسته به حالت به حل مسئله پرداخته‌شده است. قانون ارائه‌شده برای دو سناریو ره‌گیر با سرعت ثابت و سرعت متغیر، با در نظر گرفتن آیرودینامیک ره‌گیر، شبیه‌سازی و نتایج آن برای سناریوهایی با زوایای مسیر پرواز اولیه بزرگ ره‌گیر و اهداف با مانورهای پله، سینوسی و تصادفی ارائه‌شده است. همچنین، در انتها با مقایسه روش پیشنهادی در این مقاله با روش ناوبری تناسبی افزوده، نشان داده می‌شود که ره‌گیر در مدت‌زمان و فاصله از دست دهی کمتر و مسیر پیمایش کوتاه‌تر به هدف مانوری برخورد می‌کند و عملکرد مطلوب‌تری دارد.

تازه های تحقیق

  • ارائه هدایت غیرخطی مقاوم مبتنی بر بازی دیفرانسیلی
  • در نظر گرفتن آیرودینامیک ره‌گیر
  • شبیه‌سازی برای اهداف با مانورهای پله، سینوسی و تصادفی
  • در نظر گرفتن قید زاویه برخورد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Robust Nonlinear Guidance Law with Impact Angle Constraint Based on Differential Game

نویسندگان [English]

  • Saeed Nasrollahi 1
  • Amir Hossein Yahyazadeh 2
  • Iman Mohammadzaman 3
1 Corresponding author: Assistant Professor, Faculty of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran
2 M.Sc., Faculty of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran
3 Assistant Professor, Faculty of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran
چکیده [English]

With the advancement of technology, targets in various classes and with various features have entered the arena. Interceptors also have limitations such as dimensions, fuel quantity and maneuverability. Therefore, in order to approach the goal more effectively and achieve better performance, it is necessary to provide new guidance methods. The main approach of this research; The design of the robust guidance law with limited angle of attack is based on differential game theory and nonlinear optimal control. In this approach, the acceleration of the interceptor and the acceleration of the target are calculated as two separate inputs; The interceptor seeks to minimize the cost function and at the same time it is assumed that the target seeks to maximize the same cost function. For this purpose, considering nonlinear equations with uncertainty, a robust guidance law based on state-dependent Riccati equations is presented. Here, the approach is to transform the robust control problem into optimal control, and the problem is solved using the state-dependent Riccati equation optimal method. The presented law for two interceptor scenarios with constant speed and variable speed, taking into account the aerodynamics of the interceptor, simulation and its results for scenarios with large initial flight path angles of the interceptor and targets with step, sinusoidal and random maneuvers are presented. Also, at the end, by comparing the method proposed in this article with the augmented proportional navigation method, it is shown that the interceptor hits the maneuvering target in less time and less distance and shorter navigation path and has better performance.

کلیدواژه‌ها [English]

  • Final Terminal Guidance
  • Nonlinear robust control
  • State-dependent Riccati equations
  • Uncertainty
  • Differential Game


Smiley face

[1] Hu Z, Tang X, Wang Y. A 3-dimensional robust guidance law with impact angle constraint. In2011 Chinese Control and Decision Conference (CCDC) 2011 (pp. 999-1006). IEEE. DOI: https://doi.org/10.1109/CCDC.2011.5968330.
[2] Gu WJ, Zhang RC, Yu JY. A three-dimensional missile guidance law with angle constraint based on sliding mode control. In2007 IEEE International Conference on Control and Automation 2007 (pp. 299-302). IEEE. DOI: https://doi.org/10.1109/ICCA.2007.4376367.
[3] Song JM, Zhang TQ. Passive homing missile's variable structure proportional navigation with terminal angular constraint. Chinese Journal of Aeronautics. 2001;14(2):83-7.
[4] Moon J, Kim K, Kim Y. Design of missile guidance law via variable structure control. Journal of Guidance, Control, and Dynamics. 2001;24(4):659-64. DOI: https://arc.aiaa.org/doi/abs/10.2514/2.4792.
[5] Jeong SK, Cho SJ, Kim EG. Angle constraint biased PNG. In2004 5th Asian Control Conference (IEEE Cat. No. 04EX904) 2004 (Vol. 3, pp. 1849-1854). IEEE.
[6] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets. Journal of Guidance, Control, and Dynamics. 2008;31(6):1817-22. DOI: https://arc.aiaa.org/doi/abs/10.2514/1.37864.
[7] Hu Z, Cai H. An adaptive proportional guidance law against ground stationary target. In2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics 2008 (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/ISSCAA.2008.4776241.
[8] Ghosh S, Ghose D, Raha S. Three dimensional PN based impact angle control for higher speed nonmaneuvering targets. In2013 American Control Conference 2013 (pp. 31-36). IEEE. DOI: https://doi.org/10.1109/ACC.2013.6579809.
[9] Kim M, Grider KV. Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Transactions on Aerospace and Electronic Systems. 1973 (6):852-9. DOI: https://doi.org/10.1109/TAES.1973.309659.
[10] Song TL, Shin SJ, Cho H. Impact angle control for planar engagements. IEEE Transactions on Aerospace and Electronic Systems. 1999;35(4):1439-44. DOI: https://doi.org/10.1109/7.805460.
[11] Ohlmeyer EJ, Phillips CA. Generalized vector explicit guidance. Journal of guidance, control, and dynamics. 2006;29(2):261-8. DOI: https://doi.org/10.2514/1.14956.
[12] Idan M, Golan OM, Guelman M. Optimal planar interception with terminal constraints. Journal of Guidance, Control, and Dynamics. 1995;18(6):1273-9. DOI: https://doi.org/10.2514/3.21541.
[13] Ryoo CK, Cho H, Tahk MJ. Closed-form solutions of optimal guidance with terminal impact angle constraint. InProceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003. 2003 (Vol. 1, pp. 504-509). IEEE.DOI: https://doi.org/10.1109/CCA.2003.1223469.
[14] Subchan S. An indirect method for the minimum altitude of air-to-surface missile. In2008 3rd IEEE Conference on Industrial Electronics and Applications 2008 (pp. 126-131). IEEE. DOI: https://doi.org/10.1109/ICIEA.2008.4582492.
[15] Lin LG, Xin M. Missile guidance law based on new analysis and design of SDRE scheme. Journal of guidance, control, and dynamics. 2019;42(4):853-68. DOI: https://doi.org/10.2514/1.G003544.
[16] Bardhan R, Ghose D. Nonlinear differential games-based impact-angle-constrained guidance law. Journal of Guidance, Control, and Dynamics. 2015;38(3):384-402. DOI: https://doi.org/10.2514/1.G000940.
[17] Zhao B, Xu S, Guo J, Jiang R, Zhou J. Integrated strapdown missile guidance and control based on neural network disturbance observer. Aerospace Science and Technology. 2019;84:170-81. DOI: https://doi.org/10.1016/j.ast.2018.10.025.
[18] Chai R, Savvaris A, Chai S. Integrated missile guidance and control using optimization-based predictive control. Nonlinear Dynamics. 2019;96:997-1015. DOI: https://doi.org/10.1007/s11071-019-04835-8.
[19] Nobahari H, Nasrollahi S. A terminal guidance algorithm based on ant colony optimization. Computers & Electrical Engineering. 2019;77:128-46. DOI: https://doi.org/10.1016/j.compeleceng.2019.05.012.
[20] Sun J, Liu C. Backstepping-based adaptive dynamic programming for missile-target guidance systems with state and input constraints. Journal of the Franklin Institute. 2018;355(17):8412-40. DOI: https://doi.org/10.1016/j.jfranklin.2018.08.024.
[21] Ji H, Liu X, Song Z, Zhao Y. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint. Journal of the Franklin Institute. 2018;355(18):9192-208. DOI: https://doi.org/10.1016/j.jfranklin.2017.01.036.
[22] Babu KR, Sarma IG, Swamy KN. Two robust homing missile guidance laws based on sliding mode control theory. InProceedings of National Aerospace and Electronics Conference (NAECON'94) 1994 (pp. 540-547). IEEE. DOI: https://doi.org/10.1109/NAECON.1994.332858.
[23] Prisner E. Game theory through examples. American Mathematical Soc.; 2014.
[24] Ho Y, Bryson A, Baron S. Differential games and optimal pursuit-evasion strategies. IEEE Transactions on Automatic Control. 1965;10(4):385-9. DOI: https://doi.org/10.1109/TAC.1965.1098197.
[25] Turetsky V, Shinar J. Missile guidance laws based on pursuit–evasion game formulations. Automatica. 2003;39(4):607-18. DOI: https://doi.org/10.1016/S0005-1098(02)00273-X.
[26] Shima T, Golan OM. Linear quadratic differential games guidance law for dual controlled missiles. IEEE Transactions on Aerospace and Electronic Systems. 2007;43(3):834-42. DOI: https://doi.org/10.1109/TAES.2007.4383577.
[27] Robb M, Tsourdos A, White B. Earliest intercept line guidance using a game theory approach. InAIAA guidance, navigation, and control conference and exhibit 2006 (p. 6216). DOI: https://doi.org/10.2514/6.2006-6216.
[28] Shaferman V, Shima T. Linear quadratic guidance laws for imposing a terminal intercept angle. Journal of Guidance, Control, and Dynamics. 2008;31(5):1400-12. DOI: https://doi.org/10.2514/1.32836.
[29] Xu XY, Song XN, Cai YL. RETRACTED: Differential game guidance law for a kinetic kill vehicle and its simulation. Simulation. 2019;95(9):NP1- NP1. DOI: https://doi.org/10.1177/0037549715588839.
[30] Chen R, Speyer J, Lianos D. Game-theoretic homing missile guidance with autopilot lag. InAIAA Guidance, Navigation and Control Conference and Exhibit 2007 (p. 6535). DOI: https://doi.org/10.2514/6.2007-6535.
[31] Qi N, Liu Y, Tang Z. Bounded differential game guidance law for interceptor with second-order maneuvering dynamics. In2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control 2011 (pp. 925-928). IEEE. DOI: https://doi.org/10.1109/IMCCC.2011.233.
[32] Hsueh MH, Huang CI, Fu LC. A differential game based guidance law for the interceptor missiles. InIECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society 2007 (pp. 665-670). IEEE. DOI: https://doi.org/10.1109/IECON.2007.4460196.
[33] Yi L, Yan Y, Tian G, Zhanrong J. An Improved Terminal Guidance Algorithm Based on Differential Game Theory. In2010 International Conference on Intelligent System Design and Engineering Application 2010 (Vol. 1, pp. 250-254). IEEE.. DOI: https://doi.org/10.1109/ISDEA.2010.256.
[34] Sun J, Liu C, Ye Q. Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming. International Journal of Control. 2017;90(5):990-1004.. DOI: https://doi.org/10.1080/00207179.2016.1192687.
[35] Sun J, Liu C. Finite-horizon differential games for missile–target interception system using adaptive dynamic programming with input constraints. International Journal of Systems Science. 2018;49(2):264-83.. DOI: https://doi.org/10.1080/00207721.2017.1401153.
[36] Kang S, Kim HJ, Tahk MJ. Aerial pursuit-evasion game using nonlinear model predictive guidance. InAIAA Guidance, Navigation, and Control Conference 2010 (p. 7880).. DOI: https://doi.org/10.2514/6.2010-7880.
[37] Xu X, Cai Y. Design and numerical simulation of a differential game guidance law. In2016 IEEE International Conference on Information and Automation (ICIA) 2016 (pp. 314-318). IEEE. DOI: https://doi.org/10.1109/ICInfA.2016.7831842.
[38] Hao G, Zhuoyang Y, Xun W, Xuan C. Differential Game Guidance Law on Evader in Bearing-only Information Applications. 2017. DOI: https://doi.org/10.13009/EUCASS2019-94.
[39] Liang H, Jianying WA, Yonghai WA, Linlin WA, Peng LI. Optimal guidance against active defense ballistic missiles via differential game strategies. Chinese Journal of Aeronautics. 2020;33(3):978-89. DOI: https://doi.org/10.1016/j.cja.2019.12.009.
[40] JJia Y, Jie Y. Linear Quadratic Differential Game Guidance with Collision Angle Constraints. In2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE) 2019 (pp. 141-144). IEEE. DOI: https://doi.org/10.1109/AUTEEE48671.2019.9033376.
[41] Nobahari H, Nasrollahi S. A nonlinear robust model predictive differential game guidance algorithm based on the particle swarm optimization. Journal of the Franklin Institute. 2020;357(15):11042-71. DOI: https://doi.org/10.1016/j.jfranklin.2020.08.032.
[42] Lin F. Robust control design: an optimal control approach. John Wiley & Sons; 2007.
[43] Ratnoo A, Ghose D. State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories. Journal of Guidance, Control, and Dynamics. 2009;32(1):320-6. DOI: https://doi.org/10.2514/1.37876.
[44] Vaddi SS, Menon PK, Ohlmeyer EJ. Numerical state-dependent Riccati equation approach for missile integrated guidance control. Journal of guidance, control, and dynamics. 2009;32(2):699-703. DOI: https://doi.org/10.2514/1.34291.
[45] Xin M, Balakrishnan SN, Ohlmeyer EJ. Integrated guidance and control of missiles with θ-D method. IFAC Proceedings Volumes. 2004;37(6):629-34. DOI: https://doi.org/10.1016/S1474-6670(17)32246-2.
[46] Ball JA, Helton JW. H/sup infinity/control for nonlinear plants: connections with differential games. InProceedings of the 28th IEEE Conference on Decision and Control, 1989 (pp. 956-962). IEEE. DOI: https://doi.org/10.1109/CDC.1989.70268.
[47] Cloutier JR. State-dependent Riccati equation techniques: an overview. InProceedings of the 1997 American control conference (Cat. No. 97CH36041) 1997 (Vol. 2, pp. 932-936). IEEE. DOI: https://doi.org/10.1109/ACC.1997.609663.
[48] Friedland B. Advanced control system design. Prentice-Hall, Inc.; 1995.
[49] Rawling AG. On nonzero miss distance. Journal of Spacecraft and Rockets. 1969;6(1):81-3. DOI: https://doi.org/10.2514/3.29539.
[50] Kain JE, Yost DJ. Command to line-of-sight guidance: A stochastic optimal control problem. Journal of Spacecraft and Rockets. 1977;14(7):438-44. DOI: https://doi.org/10.2514/3.57220.
[51] Kee P, Dong L, Siong C. Near optimal midcourse guidance law for flight vehicle. In36th AIAA Aerospace Sciences Meeting and Exhibit 1998 (p. 583). DOI: https://doi.org/10.2514/6.1998-583.
[52] Ghahremani N, Nasrollahi S, Salmani A. Implementation of GPS/INS fusion algorithm using GPS pseudo range. Journal of Aerospace Mechanics. 2022; 18(4):105-118. DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1401.18.4.8.2.
[53] Nasrollahi S, Khooshehmehri A. The moving mass actuated projectile attitude control and estimation using a predictive controller and estimator based on the particle filter. Journal of Aerospace Mechanics. 2021; 17(3):45-56. DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.17.3.4.9.
[54] Nasrollahi S, Khooshehmehri A,  Payaminia MR. A model-aided inertial navigation system for the Remus 100 AUV. Journal of Aerospace Mechanics. 2021; 17(3):57-70. DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.17.3.5.0.
[55] Nasrollahi S, Khooshehmehri A. A model of predictive terminal guidance based on whale optimization algorithm considering the aerodynamic model of the pursuer. Journal of Aerospace Mechanics. 2021; 17(1):37-50. DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.17.1.4.5.

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 26 مهر 1403
  • تاریخ دریافت: 31 مرداد 1403
  • تاریخ بازنگری: 08 مهر 1403
  • تاریخ پذیرش: 26 مهر 1403
  • تاریخ انتشار: 26 مهر 1403