[1] Wang Z, Yuan Y, Fu Y, Li J, Yang R, Wang H. Design of power supply and distribution system for high power KaSAR satellite. In2022 3rd China International SAR Symposium (CISS) 2022 (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/CISS57580.2022.9971162.
[2] Karahan M, İyier OC, Gündoğdu ÜM, Yildirim D, Arslan C, Kazak E. Electrical power subsystem of İMECE satellite. In2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST) 2023 (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/RAST57548.2023.10197980.
[3] Acero IF, Diaz J, Hurtado-Velasco R, Bautista SR, Rincón S, Hernández FL, Rodriguez-Ferreira J, Gonzalez-Llorente J. A method for validating cubesat satellite EPS through power budget analysis aligned with mission requirements. IEEE Access. 2023;11:43316-32. DOI: https://doi.org/10.1109/ACCESS.2023.3271596.
[4] Abushawish S, Lifiya A, Khan H, Eshaq M, Gadhafi R, Gawanmeh A, Mukhtar H, Mansoor W. A Low cost, efficient electrical power system design for cubesat. In2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST) 2023 Jun 7 (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/RAST57548.2023.10197932.
[5] Patton J, Abedi A. Electrical Power System design and test for maine's first cubesat (MESAT1). In2020 IEEE MIT Undergraduate Research Technology Conference (URTC) 2020 (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/URTC51696.2020.9668897.
[6] Melaku SD, Kim HD. Optimization of multi-mission CubeSat constellations with a multi-objective genetic algorithm. Remote Sensing. 2023;15(6):1572. DOI: https://doi.org/10.3390/rs15061572.
[7] Poghosyan A, Golkar A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences. 2017;88:59-83. DOI: https://doi.org/10.1016/j.paerosci.2016.11.002.
[8] Rigo CA, Seman LO, Camponogara E, Morsch Filho E, Bezerra EA. Task scheduling for optimal power management and quality-of-service assurance in CubeSats. Acta Astronautica. 2021;179:550-60. DOI: https://doi.org/10.1016/j.actaastro.2020.11.016.
[9] He L, Liu XL, Chen YW, Xing LN, Liu K. Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment. Advances in Space Research. 2019;63(2):897-912. DOI: https://doi.org/10.1016/j.asr.2018.10.007.
[10] Slongo LK, Martínez SV, Eiterer BV, Pereira TG, Bezerra EA, Paiva KV. Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization. Acta Astronautica. 2018;147:141-51. DOI: https://doi.org/10.1016/j.actaastro.2018.03.052.
[11] Seman LO, Rigo CA, Camponogara E, Munari P, Bezerra EA. Improving energy aware nanosatellite task scheduling by a branch-cut-and-price algorithm. Computers & Operations Research. 2023 Oct 1;158:106292. DOI: https://doi.org/10.1016/j.cor.2023.106292.
[12] Molina FX, Baccelli E, Zandberg K, Donsez D, Alphand O. Cubedate: Securing Software Updates in Orbit for Low-Power Payloads Hosted on CubeSats. In2023 12th IFIP/IEEE International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN) 2023 (pp. 1-6). IEEE. DOI: https://doi.org/10.23919/PEMWN58813.2023.10304910.
[13] Paiva D, Lima R, Carvalho M, Mattiello-Francisco F, Madeira H. Enhanced software development process for CubeSats to cope with space radiation faults. In2022 IEEE 27th Pacific Rim International Symposium on Dependable Computing (PRDC) 2022 (pp. 78-88). IEEE. DOI: https://doi.org/10.1109/PRDC55274.2022.0002.
[14] Naseh H, Jamali Amleshi F, Mahmoodi A, Mohammadi Bdizi N, Bakhtiari MR. Multi-objective optimization of satellite power supply subsystem based on mass and power production. Aerospace Knowledge and Technology Journal. 2024;12(2):231-44.
[15] Zipfel PH. Modeling and simulation of aerospace vehicle dynamics. AIAA; 2000.
[16] Wei D, Zheng D, Yang L, Cai R. Low earth orbit satellite admission control scheme based on deep Q-learning. In2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE) 2023 (pp. 89-92). IEEE. DOI: https://doi.org/10.1109/NNICE58320.2023.10105799.
[17] Zhao Z, Li G, Lu D. Research on modeling method of dynamic satellite communication network based on time cumulative Graph Model. InEEI 2022; 4th International Conference on Electronic Engineering and Informatics 2022: 1-5.
[18] Wang Y, Wang Y, Shen Y. Satellite Dynamic Channel Prediction Based on LSTM Network. In2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC) 2023 Sep 15 (Vol. 7, pp. 150-155). IEEE. DOI: https://doi.org/10.1109/ITOEC57671.2023.10291710.
[19] Regan FJ. Dynamics of atmospheric re-entry. Aiaa; 1993.
[20] Wang H, Dai H, Yue X, Amir K. Prescribed performance based adaptive model-free control for highly flexible spacecraft detumbling rotating satellites. Advances in Space Research. 2024;74(5):2288-301. DOI: https://doi.org/10.1016/j.asr.2024.05.076.
[21] Lee D, Kim BJ. Different environmental conditions in genetic algorithm. Physica A: Statistical Mechanics and its Applications. 2022;602:127604. DOI: https://doi.org/10.1016/j.physa.2022.127604.
[22] Jaramillo JH, Bhadury J, Batta R. On the use of genetic algorithms to solve location problems. Computers & Operations Research. 2002;29(6):761-79. DOI: https://doi.org/10.1016/S0305-0548(01)00021-1.