تحلیل تجربی و عددی تأثیر کاهش دما روی فرکانس‌های طبیعی پوسته استوانه‌ای با استفاده از تست آکوستیکی

نوع مقاله : گرایش دینامیک، ارتعاشات و کنترل

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا ، همدان، ایران

2 نویسنده مسئول: استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا ، همدان، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه پیام نور، تهران، ایران

چکیده

با توجه به اهمیت تأثیر کاهش دما در سازه‌های گوناگون صنعتی به‌ویژه صنایع هوافضا، در این مقاله به تحلیل تجربی و عددی اثر سرما روی فرکانس‌های طبیعی یک پوسته استوانه‌ای پرداخته‌شده است. پس از ساخت یک نمونه پوسته استوانه‌ای فولادی، ابتدا به روش غیر تماسی و با استفاده از اتاق تست آکوستیک و با ارسال امواج آکوستیکی، سازه مذکور تحریک‌شده و فرکانس‌های طبیعی آن با آنالیز فرکانسی سطح فشار صوتی اندازه‌گیری شده در دمای محیط استخراج شدند. همچنین برای صحه‌گذاری روش تست، مقایسه نتایج حاصله با نتایج به‌دست‌آمده از روش تماسی چکش مودال و نتایج شبیه‌سازی المان محدود در نرم‌افزار کامسول انجام شد و تطابق مناسبی بین آن‌ها مشاهده گردید. سپس پوسته به محفظه حرارتی سرد منتقل‌شده تا به دمای کمتر از منفی 70 درجه سانتی‌گراد برسد و مجدداً آزمایش در اتاق آکوستیک تکرار شده و تأثیر افت دما روی مقادیر فرکانس‌های طبیعی سازه به دو روش تجربی و عددی موردمطالعه قرار گرفت. نتایج نشان می‌دهند که با کاهش دما، مقدار فرکانس‌های طبیعی سازه، افزایش می‌یابند. همچنین از نتایج حل عددی مشاهده می‌شود که میزان حساسیت هر یک از فرکانس‌های طبیعی سازه نسبت به تغییرات دما یکسان نمی‌باشد. به‌طور مثال بیشترین حساسیت به دما مربوط به مودهای پنجم و هفتم و کمترین حساسیت مربوط به مودهای هشتم و ششم می‌باشد.

چکیده تصویری

تحلیل تجربی و عددی تأثیر کاهش دما روی فرکانس‌های طبیعی پوسته استوانه‌ای با استفاده از تست آکوستیکی

تازه های تحقیق

  • فرکانس‌های طبیعی
  • پوسته استوانه‌ای
  • آنالیز آکوستیکی پوسته
  • کاهش دما

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical Analysis of the Effects of Temperature Reduction on the Natural Frequencies of Cylindrical Shell Using Acoustic Test

نویسندگان [English]

  • Maisam Parhikhteh 1
  • Mahdi Karimi 2
  • Reza Ahmadi 3
  • Omid Mohammadpour 3
1 Ph.D. Student, Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
2 Corresponding author: Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
3 Assistant Professor, Department of Mechanical Engineering, Payame Noor University, Hamedan, Iran
چکیده [English]

Considering the importance of the effect of temperature reduction in many industrial structures, especially aerospace industries, in this article, the experimental and numerical analysis of the effect of cold on the natural frequencies of a cylindrical shell has been discussed. After the construction of a cylindrical steel shell, first it was excited by non-contact method and using the acoustic test room and by sending acoustic waves, and its natural frequencies were measured by frequency analysis of the sound pressure level at environmental temperature. Also, to validate the test method, the results were compared with the results obtained by the modal hammer contact method and the finite element simulation results in COMSOL software and it was shown a good adaptation between them. Next, the shell was transferred to the cold thermal chamber to reach a temperature of less than minus 70 degrees Celsius, and the test was repeated in the acoustic room and the effect of temperature drop on the values of the natural frequencies of the structure were studied by both experimental and numerical methods. The results show that as the temperature decreases, the natural frequencies of the structure increase. It can also be seen from the results of the numerical solution that the sensitivity of each of the natural frequencies of the structure is not the same to temperature changes. For example, the highest sensitivity to temperature is related to the fifth and seventh modes and the lowest sensitivity is related to the eighth and sixth modes.

کلیدواژه‌ها [English]

  • Cylindrical shell
  • Acoustic
  • Natural frequencies
  • Modal analysis
  • Sound pressure level


Smiley face

[1] Zarastvand MR, Ghassabi M, Talebitooti R. Acoustic Insulation Characteristics of Shell Structures: A Review. Archives of Computational Methods in Engineering .2021;28:505–523.DOI: https://doi.org/10.1007/s11831-019-09387-z.
[2] Chronopoulos D, Ichchou M, Troclet B, Bareille O. Thermal effects on the sound transmission through aerospace composite structures. Aerospace Science and Technology. 2013;30(1):192199.  DOI: https://doi.org/10.1016/j.ast.2013.08.003.
[3] Rahmatnezhad K, Zarastvand MR, Talebitooti R. Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature, Composite Structures.  2021;276:114557.  DOI: https://doi.org/10.1016/j.compstruct.2021.114557.
[4] Faran JJ. Sound Scattering by Solid Cylinders and Sphere.  The Journal of the acoustical society of America 1951;23:405-418.  DOI: https://doi.org/10.1121/1.1906780.
[5] Junger MC. Sound scattering by thin elastic shells, Journal of the Acoustical Society of America .1952;24:366-373. DOI: https://doi.org/10.1121/1.1906905.
[6] Leissa W. Vibration of Shells US Government Printing Office, Washington, DC, 1973; (NASA SP-288).  DOI: https://doi.org/10.1121/1.1906905.
[7] Blevins RD. Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold. New York. 1979.  DOI: https://doi.org/10.1115/1.3153712.
[8] Soedel W. A new frequency formula for closed circular cylindrical shells for a large variety of boundary conditions. Journal of Sound and Vibration. 1980;70(3): 309-317. DOI: https://doi.org/10.1016/0022-460X(80)90301-6.
[9] Huang NN, Tauchert TR. Thermally induced vibration of doubly curved cross-ply laminated panels. Journal of Sound and Vibration . 1992;154(3):485-94. DOI: https://doi.org/10.1016/0022-460X(80)90301-6.
[10] Chang JS, Shyong JW. Thermally induced vibration of laminated circular cylindrical shell panels. Composites Science and Technology. 1994;51(3):419-27.  DOI: https://doi.org/10.1016/0266-3538(94)90110-4.
[11] Parhi PK, Bhattacharyya SA, Sinha PK. Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells. Composites Science and Technology. 2001;248(2):195-214. DOI: https://doi.org/10.1016/0266-3538(94)90110-4.
[12] Reddy JN. Mechanics of Laminated Composite Plates and Shells. 2nd edn. CRC Press, New York. 2004; DOI: https://doi.org/10.1201/9781498711067.
[13]  Soedel, Werner. Similitude approximations for vibrating thinshells. The Journal of the Acoustical Society of America, 1971, 49.5B: 1535-1541.  DOI: https://doi.org/10.1121/1.1912530.
[14] Ribeiro P, Jansen E. Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading. Journal of Sound and Vibration.2008;315(3):62640. DOI: https://doi.org/10.1016/j.jsv.2008.01.017.
[15] Zhao X, Lee YY, Liew KM. Thermoelastic and vibration analysis of functionally graded cylindrical shells. International Journal of Mechanical Sciences 2009;51(9-10):694707. DOI: https://doi.org/10.1016/j.ijmecsci.2009.08.001.
[16] Nanda N, Pradyumna S. Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments. Composites Science and Technology. 2011;45(20):210312. DOI: https://doi.org/10.1016/j.ijmecsci.2009.08.001.
[17] Van Tung H, Duc ND. Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading condition.  Applied Mathematical Modelling. 2014;38(1112):284866.  DOI: https://doi.org/10.1016/j.apm.2013.11.015.
[18] Xiangyang Li, Kaiping Yu, Vibration and acoustic responses of composite and sandwich panels under thermal environment,  Composite Structures. 2015;131:1040-1049. DOI: https://doi.org/10.1016/j.compstruct.2015.06.037.
[19] Mahapatra TR, Kar VR, Panda SK. Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment.  Journal of Sandwich Structures & Materials. 2015;17(5):511-45.  DOI: https://doi.org/10.1177/1099636215577363.
[20] Mahapatra TR, Panda SK, Kar VR. Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel. International Journal of Mechanics and Materials in Design . 2016;12(2):153-71.  DOI: https://doi.org/10.1007/s10999-015-9299-9.
[21] Malekzadeh Fard K, Gholami M, Pourmoayed A.R. Free Vibration and Buckling Analysis of Cylindrical Sandwich Panel with Flexible Core and Magneto Rheological Fluid Layers. Journal of Aerospace Mechanics. 2016;14(4):1-19. (In Persian). DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1397.14.4.1.7.
[22] Xin FX, Gong JQ, Ren SW, Huang LX, Lu TJ. Thermoacoustic response of a simply supported isotropic rectangular plate in graded thermal environments Applied Mathematical Modelling. 2017;44:456-69.  DOI: https://doi.org/10.1016/j.apm.2017.02.003.
[23] Mousavi SA, Kafash Mirza Rahimi M, Mahjoub S. Vibrations of a Rotating Functionally Graded Cylindrical Shell under Pressure with Ring and Stringer Stiffened. Journal of Aerospace Mechanics. 2019;15(4):1-14. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1398.15.4.1.4.
[24] Mousavi SA, Elhami MR, Kafash Mirza Rahimi M, Kharestany AA. Dynamic and Vibration Analysis of Composite Cylindrical Shell with Piezoelectric Layers. Journal of Aerospace Mechanics. 2019; 16(2):15-25. (In Persian). DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1395.12.1.6.2.
[25] Trinh MC, Nguyen DD, Kim SE. Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerospace Mechanics. 2019;87:119-32.  DOI: https://doi.org/10.1016/j.apm.2017.02.003.
[26] Mamandi A, Salimzadeh M. Nonlinear Vibration analysis of a composite cylindrical shell with internal pressure, subjected to a low velocity impact using analytical and FE methods. Journal of Aerospace Mechanics. 2020;16(3):59-73. (In Persian). DOR: https://dor.isc.ac/dor/dor:%2020.1001.1.26455323.1399.16.3.5.3.
[27] Ahmadi H, Bayat A, Duc ND. Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method. Composite Structures.2021;256:113090.  DOI:   https://doi.org/10.1016/j.compstruct.2020.113090.
[28] M. Zarei, G. Rahimi, Effect of boundary condition and variable shell thickness on the vibration behavior of grid-stiffened composite conical shells, . 2022; Applied Acoustics. 188: 108546.  DOI:  https://doi.org/10.1016/j.apacoust.2021.108546.
[29] Elhami M, Azarion H, Vahedi K. Sound transmission loss of a sandwich cylindrical shell with piezoelectric patches and functionally graded materials core. Journal of Aerospace Mechanics. 2022;18(1):91-104. (In Persian). DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1401.18.1.6.4.
[30] Grigorenko OY, Borisenko MY, Boychuk OV. et al. Numerical Determination of Natural Frequencies and Modes of Closed Corrugated Cylindrical Shells. International Applied Mechanics . 2022;58:520-532.  DOI: https://doi.org/10.1007/s10778-023-01177-2.
[31] Ebrahimi Z. Free vibration and stability analysis of a functionally graded cylindrical shell embedded in piezoelectric layers conveying fluid flow. . 2023; 29. Journal of Vibration and Control (1112),25152527.‌ DOI: https://doi.org/10.1177/10775463221081184.
[32] Yuan W, Liao H, Gao R, et al. Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment.  Applied Mathematics and Mechanics. 2023;44,897–916.DOI: https://doi.org/10.1007/s10483-023-3004-7.
[33] Shadmani M, Afsari A, Jahedi R, Kazemzadeh-Parsi M. J. Nonlinear free vibrational behavior of temperature-dependent two-directional functionally graded truncated cone-like shells in thermal environment. Journal of Vibration and Control. 2024:10775463241228742. DOI: https://doi.org/10.1177/10775463241228.
[34] Babaei M. J, Jafari A. A. Effect of thermal environment on the free vibration of functionally graded carbon nanotubes cylindrical conical shell. Journal of Thermal Stresses.  2024;47(1): 35-58. DOI: https://doi.org/10.1080/01495739.2023.2271525.
[35] Chakraborty S, Singh V, Dey T, Kumar R.  Influence of carbon nanotubes on stability and vibration characteristics of plates and panels in thermal environment: a review.  Archives of Computational Methods in Engineering. 2024:31(1):147-178. DOI: https://doi.org/10.1007/s11831-023-09976-z.
[36] Chen YH, Chen KT, Chaing YH. Plate-Damping Measurements in a Single Reverberation Room. Applied Acoustics. 1996;47:251-261, DOI: https://doi.org/10.1016/0003-682X(95)00052-B.
[37] Farshidianfar A, Farshidianfar M. H, Crocker J, Smith O. Vibration analysis of long cylindrical shells using acoustical excitation, Journal of Sound and Vibration. 2011;330(14):3381-3399, DOI: https://doi.org/10.1016/j.jsv.2011.02.002.
[38] Wu D, Wang Y, Pu Y, Shang L, Gao Z. Experimental investigation of high temperature thermal-vibration characteristics for composite wing structure of hypersonic flight vehicles. Journal of Vibroengineering. 2015;17(2):917927.
[39] Koukounian VN, Mechefske CK. Computational Modelling and Experimental Verification of the Vibroacoustic Behavior of Aircraft Fuselage Sections. Applied Acoustics,  2018;132:8-18.  DOI: https://doi.org/10.1016/j.apacoust.2017.11.004.
[40] Ding Z, Bai H, Wu Y, Zhu Y, Shao Y. Experimental Investigation of Thermal Modal Characteristics for a Ship’s Foundation under 300°C. Shock and Vibration. 2019:9:1-11.  DOI: https://doi.org/10.1155/2019/2714930.
[41] Zippo A, Barbieri M, Iarriccio G. et al. Nonlinear vibrations of circular cylindrical shells with thermal effects: an experimental study.  Nonlinear Dynamics . 2020;99:373–391. DOI: https://doi.org/10.1007/s11071-018-04753-1.
دوره 20، شماره 4 - شماره پیاپی 78
شماره پیاپی 78، فصلنامه زمستان
اسفند 1403
صفحه 87-102
  • تاریخ دریافت: 25 شهریور 1403
  • تاریخ بازنگری: 27 مهر 1403
  • تاریخ پذیرش: 13 آبان 1403
  • تاریخ انتشار: 01 اسفند 1403