[1] Zarastvand MR, Ghassabi M, Talebitooti R. Acoustic Insulation Characteristics of Shell Structures: A Review. Archives of Computational Methods in Engineering .2021;28:505–523.DOI: https://doi.org/10.1007/s11831-019-09387-z.
[2] Chronopoulos D, Ichchou M, Troclet B, Bareille O. Thermal effects on the sound transmission through aerospace composite structures. Aerospace Science and Technology. 2013;30(1):192199. DOI: https://doi.org/10.1016/j.ast.2013.08.003.
[3] Rahmatnezhad K, Zarastvand MR, Talebitooti R. Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature, Composite Structures. 2021;276:114557. DOI: https://doi.org/10.1016/j.compstruct.2021.114557.
[4] Faran JJ. Sound Scattering by Solid Cylinders and Sphere. The Journal of the acoustical society of America 1951;23:405-418. DOI: https://doi.org/10.1121/1.1906780.
[5] Junger MC. Sound scattering by thin elastic shells, Journal of the Acoustical Society of America .1952;24:366-373. DOI: https://doi.org/10.1121/1.1906905.
[6] Leissa W. Vibration of Shells US Government Printing Office, Washington, DC, 1973; (NASA SP-288). DOI: https://doi.org/10.1121/1.1906905.
[7] Blevins RD. Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold. New York. 1979. DOI: https://doi.org/10.1115/1.3153712.
[8] Soedel W. A new frequency formula for closed circular cylindrical shells for a large variety of boundary conditions. Journal of Sound and Vibration. 1980;70(3): 309-317. DOI: https://doi.org/10.1016/0022-460X(80)90301-6.
[9] Huang NN, Tauchert TR. Thermally induced vibration of doubly curved cross-ply laminated panels. Journal of Sound and Vibration . 1992;154(3):485-94. DOI: https://doi.org/10.1016/0022-460X(80)90301-6.
[10] Chang JS, Shyong JW. Thermally induced vibration of laminated circular cylindrical shell panels. Composites Science and Technology. 1994;51(3):419-27. DOI: https://doi.org/10.1016/0266-3538(94)90110-4.
[11] Parhi PK, Bhattacharyya SA, Sinha PK. Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells. Composites Science and Technology. 2001;248(2):195-214. DOI: https://doi.org/10.1016/0266-3538(94)90110-4.
[12] Reddy JN. Mechanics of Laminated Composite Plates and Shells. 2nd edn. CRC Press, New York. 2004; DOI: https://doi.org/10.1201/9781498711067.
[13] Soedel, Werner. Similitude approximations for vibrating thinshells. The Journal of the Acoustical Society of America, 1971, 49.5B: 1535-1541. DOI: https://doi.org/10.1121/1.1912530.
[14] Ribeiro P, Jansen E. Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading. Journal of Sound and Vibration.2008;315(3):62640. DOI: https://doi.org/10.1016/j.jsv.2008.01.017.
[15] Zhao X, Lee YY, Liew KM. Thermoelastic and vibration analysis of functionally graded cylindrical shells. International Journal of Mechanical Sciences 2009;51(9-10):694707. DOI: https://doi.org/10.1016/j.ijmecsci.2009.08.001.
[16] Nanda N, Pradyumna S. Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments. Composites Science and Technology. 2011;45(20):210312. DOI: https://doi.org/10.1016/j.ijmecsci.2009.08.001.
[17] Van Tung H, Duc ND. Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading condition. Applied Mathematical Modelling. 2014;38(1112):284866. DOI: https://doi.org/10.1016/j.apm.2013.11.015.
[18] Xiangyang Li, Kaiping Yu, Vibration and acoustic responses of composite and sandwich panels under thermal environment, Composite Structures. 2015;131:1040-1049. DOI: https://doi.org/10.1016/j.compstruct.2015.06.037.
[19] Mahapatra TR, Kar VR, Panda SK. Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment. Journal of Sandwich Structures & Materials. 2015;17(5):511-45. DOI: https://doi.org/10.1177/1099636215577363.
[20] Mahapatra TR, Panda SK, Kar VR. Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel. International Journal of Mechanics and Materials in Design . 2016;12(2):153-71. DOI: https://doi.org/10.1007/s10999-015-9299-9.
[21] Malekzadeh Fard K, Gholami M, Pourmoayed A.R. Free Vibration and Buckling Analysis of Cylindrical Sandwich Panel with Flexible Core and Magneto Rheological Fluid Layers. Journal of Aerospace Mechanics. 2016;14(4):1-19. (In Persian).
DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1397.14.4.1.7.
[22] Xin FX, Gong JQ, Ren SW, Huang LX, Lu TJ. Thermoacoustic response of a simply supported isotropic rectangular plate in graded thermal environments Applied Mathematical Modelling. 2017;44:456-69. DOI: https://doi.org/10.1016/j.apm.2017.02.003.
[23] Mousavi SA, Kafash Mirza Rahimi M, Mahjoub S. Vibrations of a Rotating Functionally Graded Cylindrical Shell under Pressure with Ring and Stringer Stiffened. Journal of Aerospace Mechanics. 2019;15(4):1-14. (In Persian)
DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1398.15.4.1.4.
[24] Mousavi SA, Elhami MR, Kafash Mirza Rahimi M, Kharestany AA. Dynamic and Vibration Analysis of Composite Cylindrical Shell with Piezoelectric Layers. Journal of Aerospace Mechanics. 2019; 16(2):15-25. (In Persian).
DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1395.12.1.6.2.
[25] Trinh MC, Nguyen DD, Kim SE. Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerospace Mechanics. 2019;87:119-32. DOI: https://doi.org/10.1016/j.apm.2017.02.003.
[26] Mamandi A, Salimzadeh M. Nonlinear Vibration analysis of a composite cylindrical shell with internal pressure, subjected to a low velocity impact using analytical and FE methods. Journal of Aerospace Mechanics. 2020;16(3):59-73. (In Persian).
DOR: https://dor.isc.ac/dor/dor:%2020.1001.1.26455323.1399.16.3.5.3.
[27] Ahmadi H, Bayat A, Duc ND. Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method. Composite Structures.2021;256:113090.
DOI: https://doi.org/10.1016/j.compstruct.2020.113090.
[28] M. Zarei, G. Rahimi, Effect of boundary condition and variable shell thickness on the vibration behavior of grid-stiffened composite conical shells, . 2022; Applied Acoustics. 188: 108546. DOI: https://doi.org/10.1016/j.apacoust.2021.108546.
[29] Elhami M, Azarion H, Vahedi K. Sound transmission loss of a sandwich cylindrical shell with piezoelectric patches and functionally graded materials core. Journal of Aerospace Mechanics. 2022;18(1):91-104. (In Persian).
DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1401.18.1.6.4.
[30] Grigorenko OY, Borisenko MY, Boychuk OV. et al. Numerical Determination of Natural Frequencies and Modes of Closed Corrugated Cylindrical Shells. International Applied Mechanics . 2022;58:520-532. DOI: https://doi.org/10.1007/s10778-023-01177-2.
[31] Ebrahimi Z. Free vibration and stability analysis of a functionally graded cylindrical shell embedded in piezoelectric layers conveying fluid flow. . 2023; 29. Journal of Vibration and Control (1112),25152527. DOI: https://doi.org/10.1177/10775463221081184.
[32] Yuan W, Liao H, Gao R, et al. Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment. Applied Mathematics and Mechanics. 2023;44,897–916.DOI: https://doi.org/10.1007/s10483-023-3004-7.
[33] Shadmani M, Afsari A, Jahedi R, Kazemzadeh-Parsi M. J. Nonlinear free vibrational behavior of temperature-dependent two-directional functionally graded truncated cone-like shells in thermal environment. Journal of Vibration and Control. 2024:10775463241228742. DOI: https://doi.org/10.1177/10775463241228.
[34] Babaei M. J, Jafari A. A. Effect of thermal environment on the free vibration of functionally graded carbon nanotubes cylindrical conical shell. Journal of Thermal Stresses. 2024;47(1): 35-58. DOI: https://doi.org/10.1080/01495739.2023.2271525.
[35] Chakraborty S, Singh V, Dey T, Kumar R. Influence of carbon nanotubes on stability and vibration characteristics of plates and panels in thermal environment: a review. Archives of Computational Methods in Engineering. 2024:31(1):147-178. DOI: https://doi.org/10.1007/s11831-023-09976-z.
[36] Chen YH, Chen KT, Chaing YH. Plate-Damping Measurements in a Single Reverberation Room. Applied Acoustics. 1996;47:251-261, DOI: https://doi.org/10.1016/0003-682X(95)00052-B.
[37] Farshidianfar A, Farshidianfar M. H, Crocker J, Smith O. Vibration analysis of long cylindrical shells using acoustical excitation, Journal of Sound and Vibration. 2011;330(14):3381-3399, DOI: https://doi.org/10.1016/j.jsv.2011.02.002.
[38] Wu D, Wang Y, Pu Y, Shang L, Gao Z. Experimental investigation of high temperature thermal-vibration characteristics for composite wing structure of hypersonic flight vehicles. Journal of Vibroengineering. 2015;17(2):917927.
[39] Koukounian VN, Mechefske CK. Computational Modelling and Experimental Verification of the Vibroacoustic Behavior of Aircraft Fuselage Sections. Applied Acoustics, 2018;132:8-18. DOI: https://doi.org/10.1016/j.apacoust.2017.11.004.
[40] Ding Z, Bai H, Wu Y, Zhu Y, Shao Y. Experimental Investigation of Thermal Modal Characteristics for a Ship’s Foundation under 300°C. Shock and Vibration. 2019:9:1-11. DOI: https://doi.org/10.1155/2019/2714930.
[41] Zippo A, Barbieri M, Iarriccio G. et al. Nonlinear vibrations of circular cylindrical shells with thermal effects: an experimental study. Nonlinear Dynamics . 2020;99:373–391. DOI: https://doi.org/10.1007/s11071-018-04753-1.