بررسی عددی جابجایی پنل ساندویچی با توپولوژی هسته آگزتیک تحت بارگذاری دفعی هم‌زمان متقارن

نوع مقاله : مکانیک جامدات

نویسندگان

1 نویسنده مسئول: دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

3 دکتری، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

امروزه استفاده از پنل‌های ساندویچی به دلیل وزن پایین و خاصیت جذب بار مطلوب افزایش یافته است. این سازه‌ها ممکن است تحت بارگذاری‌های گوناگونی قرار گیرند. لذا طراحی سازه‌ای با حداقل جابجایی تحت بارگذاری‌های مذکور می‌تواند اثرات مثبت بسیاری را در پی داشته باشد. در این پژوهش بارگذاری دونقطه‌ای هم‌زمان متقارن دفعی روی پنل ساندویچی با توپولوژی هسته لانه‌زنبوری آگزتیک، اعمال شده و با مدل مشابه، با توپولوژی هسته مربعی مقایسه شده است. با توجه به پرهزینه بودن انجام آزمایش‌های تجربی، در این پژوهش بررسی‌ها به‌صورت عددی توسط نرم‌افزار المان محدود LS-DYNA انجام شده است. پس از طراحی پنل ساندویچی و راستی آزمایی با داده‌های موجود در ادبیات تحقیق، مقادیر 0/5، 1 و 2 کیلوگرم TNT، در یک و دونقطه (0/25×2، 0/5×2 و 1×2 کیلوگرم) در فاصله 10 سانتی‌متری پنل ساندویچی با توپولوژی‌های مذکور منفجر شده و جابجایی آن‌ها مورد ارزیابی قرار گرفته است. در مرحله بعد جهت بررسی تأثیر فاصله بین بارهای انفجاری روی جابجایی پنل ساندویچی، این فاصله، 8، 10 و 12 سانتی‌متر در نظر گرفته‌شده و میزان جابجایی پنل‌های ساندویچی با توپولوژی‌های هسته آگزتیک و مربعی، تحت بارگذاری‌های مذکور، بررسی شده است. بر طبق بررسی‌های انجام‌شده پنل ساندویچی با هسته آگزتیک در تمام موارد عملکرد بهتری را نسبت به هسته مربعی از خود نشان داده و در بارگذاری‌های مختلف بین 1/6 تا 45/3 درصد، جابجایی صفحات جلو و عقبی آن کاهش یافته است.

چکیده تصویری

بررسی عددی جابجایی پنل ساندویچی با توپولوژی هسته آگزتیک تحت بارگذاری دفعی هم‌زمان متقارن

تازه های تحقیق

  • بررسی اثرات بارگذاری دفعی هم‌زمان روی پنل ساندویچی با هسته آگزتیک
  • مقایسه جابجایی پنل ساندویچی با هسته‌های مربع و آگزتیک تحت بارگذاری دفعی
  • بررسی تأثیر تغییر فاصله بین نقاط بارگذاری بر جابجایی پنل ساندویچی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Investigation of Deflection of Sandwich Panel with Auxetic Core Topology under Simultaneous Symmetrical Impulsive Loading

نویسندگان [English]

  • Mehdi Niajalili 1
  • Majid Alitavoli 2
  • Reza Ansari Khalkhali 2
  • Mojtaba Haghgoo 3
1 Corresponding author: Ph.D. Student, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
2 Professor, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
3 Ph.D., Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
چکیده [English]

Nowadays, the use of sandwich panels has increased due to their low weight and desirable load absorption properties. These structures may be subjected to various loading. Therefore, designing a structure with minimal displacement under various loadings can have many positive effects. In this study, a two-point simultaneous symmetrical impulsive loading was applied to a sandwich panel with an auxetic honeycomb core topology and compared with a similar model with a square core topology. Due to the high cost of conducting experimental tests, in this study, the investigations were carried out numerically using the finite element software LS-DYNA. After designing the sandwich panel and verifying it with the data available in the literature, amounts of 0.5, 1 and 2 kg of selected charge were applied at one and two points (2×0.25, 2×0.5 and 2×1 kg) at a distance of 10 cm from the sandwich panel with the mentioned topologies and their displacements were evaluated. In the next step, to investigate the effect of the distance between the explosive charges on the displacement of the sandwich panel, this distance was considered to be 8, 10 and 12 cm and the displacement of the sandwich panels with the auxetic and square core topologies under the mentioned loading was investigated. According to the studies conducted, the sandwich panel with an auxetic core showed better performance than the square core in all cases and the displacement of its front and rear faces decreased between 1.6% and 45.3% under different loadings.

کلیدواژه‌ها [English]

  • Auxetic
  • Simultaneous symmetrical impulsive loading
  • Sandwich panel
  • Core topology
  • Finite element software

Smiley face

[1] Birman V, Kardomateas GA. Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering. 2018;142:221-40. DOI: https://doi.org/10.1016/j.compositesb.2018.01.027.
[2] Liu J, Chen T, Zhang Y, Wen G, Qing Q, Wang H, et al. On sound insulation of pyramidal lattice sandwich structure. Composite Structures. 2019;208:385-94. DOI: https://doi.org/10.1016/j.compstruct.2018.10.013.
[3] Lee WG, Kim J-S, Sun S-J, Lim J-Y. The next generation material for lightweight railway car body structures: Magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2018;232(1):25-42. DOI: https://doi.org/10.1177/0954409716646140.
[4] Wang Z. Recent advances in novel metallic honeycomb structure. Composites Part B: Engineering. 2019;166:731-41. DOI: https://doi.org/10.1016/j.compositesb.2019.02.011.
[5] Seyman S, Ebrahimzade A. Numerical investigation of the effect of geometry on the energy absorption rate of sandwich panels under blast loading. Journal of Advanced Defense Science & Technology. 2020;11(4):347-55. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26762935.1399.11.4.1.6.
[6] Langdon GS, von Klemperer CJ, Sinclair GM. Blast response of sandwich structures: The influence of curvature. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures: Elsevier; 2023. p. 337-59. DOI: https://doi.org/10.1016/B978-0-12-823979-7.00013-2.
[7] Dharmasena KP, Wadley HN, Xue Z, Hutchinson JW. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. International Journal of Impact Engineering. 2008;35(9):1063-74. DOI: https://doi.org/10.16/j.ijimpeng.2007.06.008.
[8] Rai M, Chawla A, Mukherjee S. Parametric study of re-entrant honeycomb cored auxetic sandwich panel exposed to blast loading. Materials Today: Proceedings. 2023;87:197-203. DOI: https://doi.org/10.1016/j.matpr.2023.04.495.
[9] Haghgoo M, Babaei H, Mostofi TM. Dynamic response of thin triangular plates under gaseous detonation loading. Materials Today Communications. 2022;31:103423. DOI: https://doi.org/10.1016/j.mtcomm.2022.103423.
[10] Ghamarizadeh M, Khodarahmi H, Mirzababaie Mostofi T. The experimental and analytical response of circular metal sandwich panels with tubular cores under blast load. Aerospace Mechanics. 2022;17(4):81-95. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.14.4.6.4.
[11] Li Z. Study on vibration effect of pre-splitting crack in tunnel excavation under thermal explosion loading. Case Studies in Thermal Engineering. 2021;28:101401. DOI: https://doi.org/10.1016/j.csite.2021.
[12] Haghgoo M, Babaei H, Mirzababaie Mostofi T. Analytical modeling of triangular plate deflection under gaseous detonation loading. Aerospace Mechanics. 2022;18(3):41-52. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1401.18.3.4.6.
[13] Mirzababaie Mostofi T, Sayah Badkhor M, Babaei H. Experimental study and regression analysis of free and die forming of circular metallic plates using gas mixture explosion. Aerospace Mechanics. 2021;17(2):85-99. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1400.17.2.6.9.
[14] Kouzehgaran M, Khodarahmi H, Sadegh Yazdi M, Ziya-Shamami M, Mirzababaie Mostofi T. Female Die Forming of Metallic Plates using Repeated Underwater Explosions. Aerospace Mechanics. 2024;20(3):1-16. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1403.20.3.1.7
[15] Haghgoo M, Babaei H, Mostofi TM. 3D numerical investigation of the detonation wave propagation influence on the triangular plate deformation using finite rate chemistry model of LS-DYNA CESE method. International Journal of Impact Engineering. 2022;161:104108.. DOI: https://doi.org/10.1016/j.ijimpeng.2021.104108.
[16] Mohammadi Hooyeh H, Naddaf Oskouei A, Mirzababaie Mostofi T, Vahedi K. Experimental and numerical investigation of trapezoidal corrugated core sandwich panels under oblique blast loading. Aerospace Mechanics. 2023;19(2):11-23. (In Persian) DOR: https://dor.isc.ac/dor/0.1001.1.26455323.1402.19.2.2.9.
[17] Sawant R, Patel M, Patel S. Numerical analysis of honeycomb sandwich panels under blast load. Materials Today: Proceedings. 2023;87:67-73. DOI: https://doi.org/10.1016/j.matpr.2022.09.547.
[18] Ghate N, Goel MD. Influence of core topology on blast mitigation application of multi-layered honeycomb core sandwich panel. Materials Today Communications. 2023;36:106531. DOI: https://doi.org/10.1016/j.mtcomm.2023.
[19] Bohara RP, Linforth S, Ghazlan A, Nguyen T, Remennikov A, Ngo T. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive. Composite Structures. 2022;280:114907. DOI: https://doi.org/10.1016/j.compstruct.2021.
[20] Kiakojouri F, Tavakoli HR, Sheidaii MR, De Biagi V. Numerical analysis of all-steel sandwich panel with drilled I-core subjected to air blast scenarios. Innovative Infrastructure Solutions. 2022;7(5):320. DOI: https://doi.org/10.1007/s41062-022-00912-x.
[21] ASCE. American Society of Civil Engineers(ed.) ASCE standard. Reston, VA: /Structural Engineering Institute.
[22] Karlos V, Solomos G. Calculation of blast loads for application to structural components. Luxembourg: Publications Office of the European Union. 2013;5. https://core.ac.uk/download/pdf/38628317.pdf
[23] Gilsanz R, Hamburger R, Barker D, Smith JL, Rahimian A. Steel design guide 26: Design of blast resistant structures: American Institute of Steel Construction.; 2013.
[24] UFC. 3-340-02 Structures to resist the effects of accidental explosions. Department of Defense, USA. 2008.
[25] Mazaheri K, H. Assadollahi. Determination of the parameters in HOM and BKW equations of state for detonation products. Journal of Advanced Materials in Engineering. 2022;21(2):73-89. (In Persian) DOR: https://dorl.net/dor/20.1001.1.22287698.1381.21.2.6.0.
[26] Zaghloul A, Remennikov A, Uy B. Enhancement of blast wave parameters due to shock focusing from multiple simultaneously detonated charges. International Journal of Protective Structures. 2021;12(4):541-76. DOI: https://doi.org/10.1177/20414196211033310.
[27] Mohottige NW, Wu C, Hao H. Characteristics of free air blast loading due to simultaneously detonated multiple charges. International Journal of Structural Stability and Dynamics. 2014;14(04):1450002. DOI: http://dx.doi.org/10.1142/S0219455414500023.
[28] Bai F, Liu Y, Yan J, Xu Y, Shi Z, Huang F. Study on the characteristics 1303 of blast loads due to two simultaneous detonated charges in real air. International Journal of Non-1304 Linear Mechanics. 2022;146(104108):1305. DOI: https://doi.org/10.016/j.ijnonlinmec.2022.104108.
[29] Patel M, Patel S. Novel design of honeycomb hybrid sandwich structures under air-blast. Journal of Sandwich Structures & Materials. 2022;24(8):2105-23. DOI: https://doi.org/10.1177/10996362221127967.
[30] Gaur B, Patel M, Patel S. Strain rate effect on CRALL under high-velocity impact by different projectiles. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2023;45(2):103. DOI: https://doi.org/10.1007/s40430-023-04031-1.
[31] Patel M, Patel S, Ahmad S. Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins. International Journal of Impact Engineering. 2023;178:104609. DOI: https://doi.org/10.1016/j.ijimpeng.2023.
[32] Gaur B, Patel M, Patel S. Strain rate effect analysis of hybrid composites under the high-velocity impact. Materials Today: Proceedings. 2023;72:2811-6. DOI: https://doi.org/10.1016/j.matpr.2022.07.082.
[33] Haghgoo M, Babaei H, Mirzababaie Mostofi T. Numerical simulation of triangular plate deformation profile under gaseous detonation loading. Aerospace Mechanics. 2023;19(1):1-15. (In Persian) DOR: https://dor.isc.ac/dor/20.1001.1.26455323.1402.19.1.1.6.
[34] Bakhshan H, Oñate E, Carbonell i Puigbó JM. A Review of the Constitutive Modelling of Metals and Alloys in Machining Process. Archives of Computational Methods in Engineering. 2024;31(3):1611-58. DOI: https://doi.org/10.007/s11831-023-0026-x.
[35] Geng G, Ding D, Duan L, Jiang H. A modified Johnson-Cook model of 6061-T6 Aluminium profile. Australian Journal of Mechanical Engineering. 2022;20(2):516-26. DOI: https://doi.org/10.1080/14484846.2020.1721966.
[36] Hyde D. CONWEP: Conventional weapons effects program. US Army Engineer Waterways Experiment Station, USA. 1991;2.
[37] Patel S, Patel M. The efficient design of hybrid and metallic sandwich structures under air blast loading. Journal of Sandwich Structures & Materials. 2022;24(3):1706-25. DOI: https://doi.org/10.177/10996362211065748.
[38] Dev L-D. LS-DYNA®-Theory Manual. LIVERMORE SOFTWARE TECHNOLOGY (LST), AN ANSYS COMPANY. 1992.
[39] Saxena KK, Das R, Calius EP. Three decades of auxetics research− materials with negative Poisson's ratio: a review. Advanced Engineering Materials. 2016;18(11):1847-70. DOI: https://doi.org/10.002/adem.201600053.
[40] Evans KE, Alderson A. Auxetic materials: functional materials and structures from lateral thinking! Advanced materials. 2000;12(9):617-28. DOI: https://doi.org/10.1002/(SICI)521-4095(200005)12:9%3C617::AID-ADMA617%3E3.0.CO;2-3.
[41] Qi C, Remennikov A, Pei L-Z, Yang S, Yu Z-H, Ngo TD. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations. Composite structures. 2017;180:161-78. DOI: https://doi.org/10.1016/j.compstruct.2017.08.020.
دوره 21، شماره 1 - شماره پیاپی 79
شماره پیاپی 79، فصلنامه بهار
خرداد 1404
صفحه 47-60
  • تاریخ دریافت: 28 آبان 1403
  • تاریخ بازنگری: 17 آذر 1403
  • تاریخ پذیرش: 06 دی 1403
  • تاریخ انتشار: 01 خرداد 1404